Home
Class 9
MATHS
Given log(x)25 - log(x) 5 = 2 - "log"(x)...

Given `log_(x)25 - log_(x) 5 = 2 - "log"_(x) (1)/(125)`, find x.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{x} 25 - \log_{x} 5 = 2 - \log_{x} \left( \frac{1}{125} \right) \), we can follow these steps: ### Step 1: Rewrite the logarithms We start by using the properties of logarithms. We know that: - \( \log_{b} a - \log_{b} c = \log_{b} \left( \frac{a}{c} \right) \) - \( \log_{b} (a^n) = n \cdot \log_{b} a \) Using these properties, we can rewrite the left side: \[ \log_{x} 25 - \log_{x} 5 = \log_{x} \left( \frac{25}{5} \right) = \log_{x} 5 \] ### Step 2: Simplify the right side Next, we simplify the right side. We can rewrite \( \frac{1}{125} \) as \( 125^{-1} \) or \( 5^{-3} \): \[ \log_{x} \left( \frac{1}{125} \right) = \log_{x} (5^{-3}) = -3 \log_{x} 5 \] Thus, the right side becomes: \[ 2 - \log_{x} \left( \frac{1}{125} \right) = 2 + 3 \log_{x} 5 \] ### Step 3: Set the two sides equal Now we can set the simplified left side equal to the simplified right side: \[ \log_{x} 5 = 2 + 3 \log_{x} 5 \] ### Step 4: Rearrange the equation To isolate \( \log_{x} 5 \), we can rearrange the equation: \[ \log_{x} 5 - 3 \log_{x} 5 = 2 \] This simplifies to: \[ -2 \log_{x} 5 = 2 \] Dividing both sides by -2 gives: \[ \log_{x} 5 = -1 \] ### Step 5: Convert the logarithmic equation to exponential form Now we convert the logarithmic equation to its exponential form: \[ x^{-1} = 5 \] This implies: \[ x = \frac{1}{5} \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{\frac{1}{5}} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Solve for x, if : log_(x)49 - log_(x)7 + "log"_(x)(1)/(343) + 2 = 0 .

If (log_(3)x)(log_(5)3)=3 , find x.

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

If "log"_(x) (4x^("log"_(5)x) + 5) = 2 "log"_(5)x , then x equals to

If 9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

If log_(2)(x + y) = log_(3)(x - y) = (log 25)/(log 0.2) , find the values of x and y.

If 3(log 5 - log 3) - (log 5 - 2 log 6) = 2 - log x, find x.

Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of x and y.

Given 2 log_(10) x + 1 = log_(10) 250 , find : (i) x (ii) log_(10) 2x

If "log"_(2) "sin" x - "log"_(2) "cos" x - "log"_(2) (1-"tan"^(2) x) =-1 , then x =