Home
Class 11
MATHS
If f(x)=cos(logx), then f(x^(2))f(y^(2))...

If `f(x)=cos(logx)`, then `f(x^(2))f(y^(2))-(1)/(2)[f(x^(2)y^(2))+f((x^(2))/(y^(2)))]=`

A

`-2`

B

`-1`

C

`(1)/(2)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the function \( f(x) = \cos(\log x) \) and need to evaluate the expression: \[ f(x^2)f(y^2) - \frac{1}{2}\left[f(x^2y^2) + f\left(\frac{x^2}{y^2}\right)\right] \] ### Step 1: Calculate \( f(x^2) \) and \( f(y^2) \) Using the definition of the function: \[ f(x^2) = \cos(\log(x^2)) = \cos(2\log x) \] \[ f(y^2) = \cos(\log(y^2)) = \cos(2\log y) \] ### Step 2: Calculate \( f(x^2y^2) \) Using the property of logarithms: \[ f(x^2y^2) = \cos(\log(x^2y^2)) = \cos(\log(x^2) + \log(y^2)) = \cos(2\log x + 2\log y) = \cos(2(\log x + \log y)) \] ### Step 3: Calculate \( f\left(\frac{x^2}{y^2}\right) \) Using the property of logarithms again: \[ f\left(\frac{x^2}{y^2}\right) = \cos\left(\log\left(\frac{x^2}{y^2}\right)\right) = \cos(\log(x^2) - \log(y^2)) = \cos(2\log x - 2\log y) = \cos(2(\log x - \log y)) \] ### Step 4: Substitute into the expression Now we substitute back into the original expression: \[ f(x^2)f(y^2) = \cos(2\log x) \cos(2\log y) \] The expression becomes: \[ \cos(2\log x) \cos(2\log y) - \frac{1}{2}\left[\cos(2(\log x + \log y)) + \cos(2(\log x - \log y))\right] \] ### Step 5: Use the cosine addition formula We can use the cosine addition formula: \[ \cos A \cos B = \frac{1}{2}[\cos(A + B) + \cos(A - B)] \] Let \( A = 2\log x \) and \( B = 2\log y \): \[ \cos(2\log x) \cos(2\log y) = \frac{1}{2}[\cos(2\log x + 2\log y) + \cos(2\log x - 2\log y)] \] ### Step 6: Substitute back into the expression Now we can substitute this back into our expression: \[ \frac{1}{2}[\cos(2\log x + 2\log y) + \cos(2\log x - 2\log y)] - \frac{1}{2}[\cos(2(\log x + \log y)) + \cos(2(\log x - \log y))] \] ### Step 7: Simplify the expression Notice that: \[ \cos(2\log x + 2\log y) = \cos(2(\log x + \log y)) \] \[ \cos(2\log x - 2\log y) = \cos(2(\log x - \log y)) \] Thus, the two terms cancel out, leading to: \[ 0 \] ### Final Answer The final result is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    ICSE|Exercise EXERCISE 2 (a)|24 Videos
  • RELATIONS AND FUNCTIONS

    ICSE|Exercise EXERCISE 2 (b)|26 Videos
  • RELATION AND FUNCTIONS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS (Choose the correct answer from the given four options in questions)|32 Videos
  • SAMPLE QUESTION PAPER 01

    ICSE|Exercise SECTION C|8 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cos(logx) , then prove that f((1)/(x)).f((1)/(y))-(1)/(2)[f((x)/(y))+f(xy)]=0

If f(x) = cos(log x) then f(x)f(y)-1/2[f(x/y)+f(xy)] has the value

If f(x+y,x -y)= xy then (f(x,y)+f(y,x))/(2)=

If 3x+2y=1 is a tangent to y=f(x) at x=1//2 , then lim_(xrarr0) (x(x-1))/(f((e^(2x))/(2))-f((e^(-2x))/(2)))

If f(x)=cos((log)_e x),\ t h e n\ f(1/x)f(1/y)-1/2{f(x y)+f(x/y)} is equal to a. "cos"(x-y) b. log(cos(x-y)) c. 0 d. "cos"(x+y)

If f(x)=sin(logx) then f(xy)+f(x/y)-2f(x)cos(logy)= (A) cos(logx) (B) sin(logy) (C) cos(log(xy)) (D) 0

If the normal to y=f(x) at (0, 0) is given by y-x =0, then lim_(x to 0)(x^(2))/(f(x^(2))-20f(9x^(2))+2f(99x^(2))) , is

If y=f(x) and x=g(y) are inverse of each other. Then g'(y) and g"(y) in terms of derivative of f(y) is A. -(f"(x))/([f'(x)]^(3)) B. (f"(x))/([f'(x)]^(2)) C. -(f"(x))/([f'(x)]^(2)) D. None of these

If f(x+2y , x-2y)=x y , then f(x,y) equals

If f(x)=(2^x+2^(-x))/2 , then f(x+y)f(x-y) is equals to (a) 1/2{f(2x)+f(2y)} (b) 1/2{f(2x)-f(2y)} (c) 1/4{f(2x)+f(2y)} 1/4{f(2x)-f(2y)}

ICSE-RELATIONS AND FUNCTIONS-EXERCISE 2 (g)
  1. If f(x)=cos(logx), then f(x^(2))f(y^(2))-(1)/(2)[f(x^(2)y^(2))+f((x^(2...

    Text Solution

    |

  2. Draw the graph of function. y=(1)/(|x|)

    Text Solution

    |

  3. draw the graph of function. y=(|x|-x)/(2)

    Text Solution

    |

  4. Draw the graph of function. y=(1)/(|x|)

    Text Solution

    |

  5. Draw the graph of function. y=|4-x^(2)|,-3lexle3.

    Text Solution

    |

  6. Graph each function. y=|x|+x,-2lexle2

    Text Solution

    |

  7. Graph function. y=|x+2|+x

    Text Solution

    |

  8. Copy and complete this table of values :

    Text Solution

    |

  9. Draw the graph y=3^(x) on squared paper, for -2lexle3.

    Text Solution

    |

  10. What features do the graphs of y=2^(x) and y=3^(x) have in common?

    Text Solution

    |

  11. Draw the graphs y=2^(x) and y=((1)/(2))^(x), on the same diagram, for ...

    Text Solution

    |

  12. In the graph of y= 2^(x) and y= (1/2)^(x) Which line is the axis of sy...

    Text Solution

    |

  13. A sketch of the graph y=alog(4)(x+b) is shown. Find the values of a an...

    Text Solution

    |

  14. Diagram (i) shows the curve y=log(a)x. What is the value of a? .

    Text Solution

    |

  15. Diagram (ii) shows the curve y=log(10)(x+p). What is the value of p?

    Text Solution

    |

  16. Sketch the graphs y=2 and y=log(10)2x on the same diagram.

    Text Solution

    |

  17. Find the point of intersection of the graphs by solving the equation l...

    Text Solution

    |

  18. The sketch shows part of the graph y=alog(2)(x-b). Find the values of ...

    Text Solution

    |

  19. Sketch the graphs y=4-x and y=log(10)x on the same diagram.

    Text Solution

    |

  20. (i)sketch the graph y=4-x and y= log(10)x on same graph . (ii) write...

    Text Solution

    |

  21. Sketch the graphs y=4-x and y=log(10)x on the same diagram.

    Text Solution

    |