Home
Class 11
MATHS
Show that Lt(x to-2) sqrt(x^(2)-4)=0= Lt...

Show that `Lt_(x to-2) sqrt(x^(2)-4)=0= Lt_(x to 2) sqrt(x^(2)-4)`

Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise EXERCISE 1.2 (VERY SHORT ANSWER QUESTIONS)|9 Videos
  • LIMITS

    AAKASH SERIES|Exercise EXERCISE 1.2 ( SHORT ANSWER QUESTIONS)|12 Videos
  • LIMITS

    AAKASH SERIES|Exercise EXERCISE 1.1 (VERY SHORT ANSWER QUESTIONS)|23 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Show that Lt_(xto-2^(+))sqrt(x^(2)-4)=0=Lt_(xto-2)sqrt(x^(2)-4)

Lt_(x to 2) sqrt(4-x^(2))=

Lt_(x to 0) sqrt(|x|-x)=

Show that Lt_(xto2-)(|x-2|)/(x-2)=-1

Show that Lt_(x to 0)(log(1+x))/(x^(2))=1

Lt_(x to oo) {sqrt(x^(2)-sqrt(x^(4)+1))-x sqrt(2)}=

Show that : Lt_(x to 0)(sqrt(1+x)-sqrt(1+x^(2)))/(sqrt(1+x^(2))-sqrt(1-x))=1

Show that Lt_(xto0)(sqrt(7+x)-sqrt(7+x^(2)))/(sqrt(7-x^(2))-sqrt(7-x))=1

Evaluate Lt_(xtooo)(sqrt(x^(2)+x)-x)

Show that Lt_(xto0)(x)/(sqrt(1+x)-sqrt(1-x))=1