Home
Class 11
MATHS
Lt(x to 0) (tanx-sinx)/(x^(2))=...

`Lt_(x to 0) (tanx-sinx)/(x^(2))=`

A

`-(1)/(2)`

B

1

C

`(1)/(2)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-II|100 Videos
  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos
  • LIMITS

    AAKASH SERIES|Exercise ADDITIONL EXERCISE|28 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following Lt_(xto0)(tanx-sinx)/x^(3)

Lt_(x to 0) ((sinx)/(x^(2))-(1)/(x))=

Lt_(x to 0)(sinx)/(|x|)=

Evaluate Lt_(x to oo) (x^2-sinx)/(x^2 - 2)

Lt_(x to 0)(e^(tanx)-e^(sinx))/((e^(2x)-1)(1-cos4x))

Evaluate the following limits. Lt_(xto0)(tan(tanx)-tanx)/(x^(2)tanx)

Evaluate Lt_(x to 0)(e^x-sinx-1)/(x)

Lt_(x to 0) (a sin x-sinx2x)/(tan^(3)x) is finite, then a=