Home
Class 11
MATHS
Lt(x to (pi)/(4)) (cosx-sinx)/((pi)/(4)-...

`Lt_(x to (pi)/(4)) (cosx-sinx)/((pi)/(4)-x)=`

A

`sqrt(2)`

B

`-sqrt(2)`

C

`(1)/(sqrt(2))`

D

`(-1)/(sqrt(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-II|100 Videos
  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos
  • LIMITS

    AAKASH SERIES|Exercise ADDITIONL EXERCISE|28 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Lt_(x to (pi)/(2))[ sinx]=

Lt_(x to pi)[x]=

Lt_(x to (pi)/(2)) (sin x)^(tanx)=

Lt_(x to oo)x cos ((pi)/(4x))sin((pi)/(4x))=

Lt_(x to (pi)/(2))(tanx)^(cosx)=

Lt_(x to (pi)/(2)) ((1+cosx)/(1-cosx))^(secx)=

Lt_(x to 0)(cosx+sinx)^(1//x)=

Evalute 7Lt_(xto pi/2)(cotx-cosx)/((pi/2-x)^(3))

Prove cos ((pi)/(4) - x) cos ((pi)/(4) -y) - sin ((pi)/(4) -x) sin ((pi)/(4) -y) = sin ( x +y)

If l_(1)= Lt_(x to2^(+))(x+[x]),l_(2)=Lt_(x to 2^(-))(2x-[x]) and l_(3)=Lt_(x to pi//2)(cosx)/((x-(pi)/(2))) then