Home
Class 11
MATHS
Lt(x to oo) ((n+2)!+(n+1)!)/((n+2)!-(n+1...

`Lt_(x to oo) ((n+2)!+(n+1)!)/((n+2)!-(n+1)!)=`

A

1

B

`-1`

C

2

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-II|100 Videos
  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos
  • LIMITS

    AAKASH SERIES|Exercise ADDITIONL EXERCISE|28 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Lt_(ntooo)((n+2)!+(n+1)!)/((n+2)!-(n+1)!)

If 0 lt a< b then Lt_(x to oo) (a^(n+3)+b^(n+3))/(a^(n)+b^(n))=

Lt_(n to oo)(6^(n)+5^(n))^(1//n)=

Lt_(x to oo)(sum n)/(1-n^(2))=

Lt_(x to oo)[(1)/(n^(2)-1)+(2)/(n^(2)-1)+....+(n)/(n^(2)-1)]=

Lt_(x to oo) (5.2^(n+1)+2.3^(n+1))/(3.2^(n)-7.3^(n))=

Lt_(x to oo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

Lt_(x to oo) (((n)/(n+1))^(lambda)+"tan"(1)/(n))^(n)=

Evaluate the limit . Lt_(n to oo) sum_(i=1)^(n) (i)/(n^(2)+i^(2))

Lim_(x to oo)[((n)/(n+1))^(a)+"sin"(1)/(n)]^(n)=