Home
Class 11
MATHS
If f(a)=2f^(1)=1, g(a)=-1,g^(1)(a)=2 the...

If `f(a)=2f^(1)=1, g(a)=-1,g^(1)(a)=2` then `Lt_(x to a) (g(x).f(a)-g(a)f(x))/(x-a)=`

A

`(1)/(5)`

B

5

C

`(-1)/(5)`

D

`-5`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos
  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-I|48 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

If f(x)=1+1//x, g(x)=sqrt(1-x^(2)) , then the domain of f(x)-g(x) is

If f(x)=2x-1, g(x)=x^(2) , then (3f-2g)(x)=

If f(x)=(1)/(2)[3^(x)+3^(-x)], g(x)=(1)/(2)[3^(x)-3^(-x)] then f(x)g(y)+f(y)g(x)=

If f(x)=x^(2), g(x)=x^(2)-5x+6 then (g(2)+g(2)+g(0))/(f(0)+f(1)+f(-2))=

If f(g(x)) = x and g(f(x)) = x then g(x) is the inverse of f(x) . (g'(x))f'(x) = 1 implies g'(f(x))=1/(f'(x)) Let g(x) be the inverse of f(x) such that f'(x) =1/(1+x^5) ,then (d^2(g(x)))/(dx^2) is equal to

If f(g(x)) = x and g(f(x)) = x then g(x) is the inverse of f(x) . (g'(x))f'(x) = 1 implies g'(f(x))=1/(f'(x)) Let us consider a real value bijective function g(x) sun that g'(x) = sin^2 (x+pi/4) +2 cos (x -pi/4) and g(pi/4) =3 then value of (g^(-1))(3) is

If f_(r)(x),g_(r)(x),h_(r)(x),r=1,2,3 are polynomials in x such that f_(r)(a)=g_(r)(a)=h_(r)(a),r=1,2,3 and F(x)=|(f_(1)(x),f_(2)(x),f_(3)(x)),(g_(1)(x),g_(2)(x),g_(3)(x)),(h_(x),h_(2)(x),h_(3)(x))| , then F'(x) at x=a is