Home
Class 11
MATHS
Lt(x rarr 0)(6^(x) - 3^(x) - 2^(x)+1)/(x...

`Lt_(x rarr 0)(6^(x) - 3^(x) - 2^(x)+1)/(x^(2)) =`

A

`(log_(e)^(2))(log_(e)^(3))`

B

`log_(e)^(5)`

C

`log_(e)^(6)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos
  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-I|48 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Lt_(xto0) (6^x -3^x -2^x +1)/(x^2)=

Evulate Lt_(x to 0)(27^(x)-9^(x)-3^(x)+1)/(x^(2))

Evaluate Lt_(xto0)(27^(x)-9^(x)-3^(x)+1)/x^(2) .

{:(" " Lt),(x rarr0):}(int_(0)^(x) sin^(3) t dt)/(x^(4))=

underset(x rarr 0)(lim) (cos 4x - 4 cos 2x + 3)/(x^(4)) =

Lt_(x to 0)(e^(2x)+x)^(1//x) =

Lt_(x to 0) ((2^(x)+2^(2x)+2^(3x))/(3))^(1//x)=