Home
Class 11
MATHS
Lt(x to 0) (a sin x-sinx2x)/(tan^(3)x) i...

`Lt_(x to 0) (a sin x-sinx2x)/(tan^(3)x)` is finite, then a=

A

0

B

2

C

`-2`

D

cannot be determined

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos
  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-I|48 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Lt_(x to 0) (a cosx+bx sin x-5)/(x^(4)) is finite then a =

Lt_(x to 0)(log_(sinx)sin2x)=

Lt_(x to 0) (tanx-sinx)/(x^(2))=

Lt_(x to 0) (a^(sin2x)-b^(sinx))/(x)=

Lt_(x to 0) log_(x) sin x=

Lt_(x to 0)(sinx)^(tanx)=

Lt_(x to 0) (sin3x. Sin 4x)/(x.tan5x)=

Lt_(x to 0) (tan^(3)x-sin^(3)x)/(x^(5))=

Lt_(x to 0) (e^(sin ax)-e^(sin bx))/(tan2x)=

AAKASH SERIES-LIMITS-EXERCISE-II
  1. underset(x to 0)"Lt" ((1-e^(x))sin x)/(x^(2)+x^(3))=

    Text Solution

    |

  2. Lt(x to 1) (ax^(2)+bx+c)/(x-1)=0, then

    Text Solution

    |

  3. Lt(x to 0) (a sin x-sinx2x)/(tan^(3)x) is finite, then a=

    Text Solution

    |

  4. Lt(x to 0) ((cos4x+a cos 3x+b)/(x^(4))) is finite then the values of a...

    Text Solution

    |

  5. Lim(x to 0) (a.e^(x)-b)/(x)=2, then a,b are

    Text Solution

    |

  6. Lt(x to 0) (a- sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),a gt 0. If L si ...

    Text Solution

    |

  7. Lt(x to oo) ((x+1)^(10)+(x+2)^(1)....+(x+50)^(10))/(x^(10)-10^(10))

    Text Solution

    |

  8. underset(x to oo)lim (sqrt(x^(2)+1)-root3(x^(2)+1))/(root4(x^(4)+1)-ro...

    Text Solution

    |

  9. Lt(x to oo) (sqrt(x))/(sqrt(x+sqrt(x+sqrt(x))))=

    Text Solution

    |

  10. Lt(x to oo)(sum n)/(1-n^(2))=

    Text Solution

    |

  11. underset(n to oo)lim (n(1^(3)+2^(3)+...+n^(3))^(2))/((1^(2)+2^(2)+...+...

    Text Solution

    |

  12. underset(n to oo)lim (1+3+5+....+(2n-1))/(2+4+6+..2n)

    Text Solution

    |

  13. underset(n to oo)lim (1+3+3^(2)+...3^(n))/(1+2+2^(2)+...+2^(n))=

    Text Solution

    |

  14. Lt(x to oo) (1+(1)/(3)+(1)/(9)+.....+(1)/(3^(n)))/(1+(1)/(5)+(1)/(25)+...

    Text Solution

    |

  15. underset(n to oo)lim (1+3+6+...+n(n+1)//2)/(n^(3))=

    Text Solution

    |

  16. Lt(x to oo)[(1)/(n^(2)-1)+(2)/(n^(2)-1)+....+(n)/(n^(2)-1)]=

    Text Solution

    |

  17. If 0lt x lt y then Lt(x to oo) (y^(n)+x^(n))^(1//n)=

    Text Solution

    |

  18. Lt(x to oo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

    Text Solution

    |

  19. If 0 lt a< b then Lt(x to oo) (a^(n+3)+b^(n+3))/(a^(n)+b^(n))=

    Text Solution

    |

  20. underset(n to oo)lim (1.1!+2.2!+3.3!+...+n.n!)/((n+1)!)=

    Text Solution

    |