Home
Class 11
MATHS
Lt(x to oo) {sqrt(x^(2)-sqrt(x^(4)+1))-x...

`Lt_(x to oo) {sqrt(x^(2)-sqrt(x^(4)+1))-x sqrt(2)}=`

A

`-1`

B

0

C

`-oo`

D

`oo`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos
  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-I|48 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Lt_(x to oo)(sqrt(x^(4)+1)-sqrt(x^(4)-1))=

Lt_(x to 2) sqrt(4-x^(2))=

Lt_(x to oo) (sqrt(3+9x^(2))+sqrt(4x^(2)-1))/(sqrt(1+16x^(2))-sqrt(9x^(2)+2))=

Lt_(x to oo)(cossqrt(x+1)-cos sqrt(x))=

underset(x to oo)lim (sqrt(1+9x^(2))+sqrt(x^(2)-1))/(sqrt(1+9x^(2))-sqrt(x^(2)-1))=

underset(x to oo)lim (sqrt(1+25x^(2))+sqrt(9x^(2)-1))/(sqrt(1+25x^(2))-sqrt(9x^(2)-1))

Lt_(x to oo) (x)/(sqrt(ax^(2)+b)-sqrt(cx^(2)+b))=

underset(x to oo)lim {sqrt(x^(2)+1)-sqrt(x^(2)-1)}=

Lt_(x to 0) (x^(2))/(sqrt(a+x^(2))-sqrt(a-x^(2)))=

Lt_(x to oo) (sqrt(x))/(sqrt(x+sqrt(x+sqrt(x))))=