Home
Class 11
MATHS
If Lt(x to0) (1+ax)^(b//x)=e^(4), where ...

If `Lt_(x to0) (1+ax)^(b//x)=e^(4)`, where 'a' and 'b'a re different natiral numbers hen

A

a=4,b=2

B

a=8,b=4

C

a=16,b=8

D

a=4,b=1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos
  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-I|48 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Lt_(x to 0) (1+ax)^(1//bx)=

Lt_(x to0)x^(x)=

If Lt_(xto0)(1+ax+bx^(2))^(2//x)=e^(3) , find a and b.

If Lt_(x to 0)(1+ax+bx^(2))^(2//x)=e^(3) , find an and b.

Lt_(x to0)(sinx^(2))/(|x|)=

Lt_(x to0) ((|x|)/(x)+x+2)=

Lt_(x to 0)(e^(2x)+x)^(1//x) =

Show that Lt_(xto0)(a^(x)-1)/(b^(x)-1)=log_(b)a where a and b are positive numbers other than unity.