Home
Class 11
MATHS
Lt(x to0)(sinx^(2))/(|x|)=...

`Lt_(x to0)(sinx^(2))/(|x|)=`

A

0

B

1

C

2

D

does not exist

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos
  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-I|48 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Lt_(x to 0)(sin(x^(0)))/(x)=

Lt_(x to 0)(sinx)/(|x|)=

Lt_(x to0)x^(x)=

Lt_(x to 0)(sinx)^(tanx)=

Evaluate Lt_(x to 0)(e^x-sinx-1)/(x)

Compute: Lt_(x to0) x^(2)cos((2)/(x))

Evaluate the following limits. Lt_(xto0)(sinx)/(xcos2x)

Find Lt_(x to 0)((sinx)/(x))^((sinx)/(x-sinx))

Lt_(x to 0) ((sinx)/(x^(2))-(1)/(x))=

Lt_(x to 0)(cosx+sinx)^(1//x)=