Home
Class 11
MATHS
Lt(x to 0) (a^(sin2x)-b^(sinx))/(x)=...

`Lt_(x to 0) (a^(sin2x)-b^(sinx))/(x)=`

A

`a^(2)-b`

B

`log((a)/(b))`

C

`2loga-logb`

D

`loga+logb`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-II|100 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Lt_(x to 0)(e^(tanx)-e^(sinx))/((e^(2x)-1)(1-cos4x))

Lt_(x to 0) ((sinx)/(x^(2))-(1)/(x))=

Lt_(x to 0)(log_(sinx)sin2x)=

Lt_(x to 0) (a sin x-sinx2x)/(tan^(3)x) is finite, then a=

Find Lt_(x to 0)((sinx)/(x))^((sinx)/(x-sinx))

Lt_(x to 0)((sinx)/(x))^((sinx)/(x-sinx))=

Lt_(x to 0) (tanx-sinx)/(x^(2))=

Lt_(x to 0)(sinx)^(tanx)=