Home
Class 11
MATHS
Statement-I : If Lt(x to 0)f(x) exists, ...

Statement-I : If `Lt_(x to 0)f(x)` exists, then `Lt_(x to a)f(x)=Lt_(x to0)f(a+x)=Lt_(x to 0) f(a-x)`
Statement-II : `Lt_(x to (pi)/(2))((cotx)/(x-(pi)/(2)))=1` which one of the following is correct

A

only I

B

only II

C

both I & II

D

Neither I nor II

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-II|100 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Lt_(x to0)x^(x)=

Lt_(x to pi)[x]=

Lt_(x to0)(sinx^(2))/(|x|)=

Lt_(x to 2) (xf(2)-2f(x))/(x-2)=

If l_(1)= Lt_(x to2^(+))(x+[x]),l_(2)=Lt_(x to 2^(-))(2x-[x]) and l_(3)=Lt_(x to pi//2)(cosx)/((x-(pi)/(2))) then

Compute: Lt_(x to0) x^(2)cos((2)/(x))

AAKASH SERIES-LIMITS-PRACTICE EXERCISE
  1. Evaluate Lt(x to 0) (e^(x) -1)/(sqrt(1 + x) - 1)

    Text Solution

    |

  2. If underset(x to o)"Lt" (log(3+x)-log(3-x))/(x)=k then k=

    Text Solution

    |

  3. Statement-I : If Lt(x to 0)f(x) exists, then Lt(x to a)f(x)=Lt(x to0)f...

    Text Solution

    |

  4. If f(x)=-sqrt(25-x^(2))", then " underset(x to 1)"Lt" (f(x)-f(1))/(x-1...

    Text Solution

    |

  5. f(x)=3x^(2)-4x+5,Lt(x to 1) (f(x)-f(1))/(x-1)=

    Text Solution

    |

  6. Lt(x to 0)(e^(alphax)-e^(betax))/(sin alphax- sin betax)=

    Text Solution

    |

  7. Lt(x to pi//2)(a^(cotx)-a^(cosx))/(cotx-cosx)=

    Text Solution

    |

  8. Lt(x to 0)((1+x^(2))^(1//3)-(1-2x)^(1//4))/(x+x^(2))

    Text Solution

    |

  9. Let f(a)=g(a)=k and the their nth derivatives f^(n)(a),g^(n)(a) exixst...

    Text Solution

    |

  10. Lim(x to 0)(x)/(""^(3)sqrt(x^(2)+3x+8)-""^(3) sqrt(x^(2)-5x+8))=

    Text Solution

    |

  11. Lt(x to 0) (tan^(4)x-sin^(4)x)/(x^(6))=

    Text Solution

    |

  12. The arrangement of the following limit values in the ascending order C...

    Text Solution

    |

  13. Lt(x to 0) {"cosec"^(3)x. cotx-2cot^(3)x."cosec"x+(cot^(4))/(secx)}=

    Text Solution

    |

  14. If 'alpha' is a repeated root of ax^(2)+bx+c=0 then Lt(x to alpha)(tan...

    Text Solution

    |

  15. Lt(x to 0) (1)/(x) sin^(-1)((2x)/(1+x^(2)))=

    Text Solution

    |

  16. Lt(x to 0)(1-cos(x^(0)))/(x^(2))=

    Text Solution

    |

  17. The correct match is

    Text Solution

    |

  18. Lt(x to 0) (sin(x^(0)))/(tanx^(0))=

    Text Solution

    |

  19. Lt(x to 0) ((cosx)^((1)/(2))-(cosx)^((1)/(3)))/(sin^(2)x)=

    Text Solution

    |

  20. If Lim(x to 0) (sin2x+asinx)/(x^(3))=b where a,b in R then (a,b)=

    Text Solution

    |