A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
AAKASH SERIES-LIMITS-PRACTICE EXERCISE
- Evaluate Lt(x to 0) (e^(x) -1)/(sqrt(1 + x) - 1)
Text Solution
|
- If underset(x to o)"Lt" (log(3+x)-log(3-x))/(x)=k then k=
Text Solution
|
- Statement-I : If Lt(x to 0)f(x) exists, then Lt(x to a)f(x)=Lt(x to0)f...
Text Solution
|
- If f(x)=-sqrt(25-x^(2))", then " underset(x to 1)"Lt" (f(x)-f(1))/(x-1...
Text Solution
|
- f(x)=3x^(2)-4x+5,Lt(x to 1) (f(x)-f(1))/(x-1)=
Text Solution
|
- Lt(x to 0)(e^(alphax)-e^(betax))/(sin alphax- sin betax)=
Text Solution
|
- Lt(x to pi//2)(a^(cotx)-a^(cosx))/(cotx-cosx)=
Text Solution
|
- Lt(x to 0)((1+x^(2))^(1//3)-(1-2x)^(1//4))/(x+x^(2))
Text Solution
|
- Let f(a)=g(a)=k and the their nth derivatives f^(n)(a),g^(n)(a) exixst...
Text Solution
|
- Lim(x to 0)(x)/(""^(3)sqrt(x^(2)+3x+8)-""^(3) sqrt(x^(2)-5x+8))=
Text Solution
|
- Lt(x to 0) (tan^(4)x-sin^(4)x)/(x^(6))=
Text Solution
|
- The arrangement of the following limit values in the ascending order C...
Text Solution
|
- Lt(x to 0) {"cosec"^(3)x. cotx-2cot^(3)x."cosec"x+(cot^(4))/(secx)}=
Text Solution
|
- If 'alpha' is a repeated root of ax^(2)+bx+c=0 then Lt(x to alpha)(tan...
Text Solution
|
- Lt(x to 0) (1)/(x) sin^(-1)((2x)/(1+x^(2)))=
Text Solution
|
- Lt(x to 0)(1-cos(x^(0)))/(x^(2))=
Text Solution
|
- The correct match is
Text Solution
|
- Lt(x to 0) (sin(x^(0)))/(tanx^(0))=
Text Solution
|
- Lt(x to 0) ((cosx)^((1)/(2))-(cosx)^((1)/(3)))/(sin^(2)x)=
Text Solution
|
- If Lim(x to 0) (sin2x+asinx)/(x^(3))=b where a,b in R then (a,b)=
Text Solution
|