Home
Class 11
MATHS
If [x] is the greatest integer function,...

If [x] is the greatest integer function, then
`underset (x to 2^+)lim ([x]^3/3-[x/3]^3)=`

A

0

B

`(64)/(27)`

C

`(8)/(3)`

D

`(10)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-II|100 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

underset(x to 3)"Lt" [x]=

If [.] denotes the greatest integer functon, then Lt_(n to oo)([1^(3)x]+[2^(3)x]+....+..[n^(3)x])/(n^(4))

underset(x to 3)"Lt"|x|

If [x] denotes the greatest integer le x , then underset(n rarr oo)lim(1)/(n^(3)){[1^(2)x]+[2^(2)x]+[3^(2)x]+...+[n^(2)x]}=

underset(x to oo)lim (-x^(3)+8)/(2x^(2)+5x+7)=

underset(x to 2)"Lt" (x^(5)-32)/(x^(3)-8)=

If [x] denotes the greatest integer function, then the domain of the function f(x)=sqrt((x-[x])/(log (x^(2)-x))) is

underset(x to oo)lim (sqrt(3x^(2)+5))/(5x+3)=