A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
AAKASH SERIES-LIMITS-PRACTICE EXERCISE
- Lt(x to oo) (2x+7sinx)/(4x+2cosx)=
Text Solution
|
- Arrnge the following limits in the ascending order (a) Lt(x to oo)((...
Text Solution
|
- Evaluate the following limits : Lt(ntooo)(1^(3)+2^(3)+3^(3)+......+n...
Text Solution
|
- Lt(x to oo)((1+(1)/(2)+(1)/(4)+(1)/(8)+....+(1)/(2^(n)))/(1+(1)/(3)+(1...
Text Solution
|
- Lt(x to oo)((1)/(3.5)+(1)/(5.7)+.....+(1)/((2n+1)(2n+3)))=
Text Solution
|
- The value of Lim(x to oo)(1.2+2.3+3.4+....+n.(n+1))/(n^(3))= is
Text Solution
|
- If 0 lt p lt q then Lt(x to oo)(q^(n)+p^(n))^(1//n)=
Text Solution
|
- Lt(n to oo)(6^(n)+5^(n))^(1//n)=
Text Solution
|
- Lt(x to oo) (5.2^(n+1)+2.3^(n+1))/(3.2^(n)-7.3^(n))=
Text Solution
|
- Lim(x to oo)(x^(3)sin((1)/(x))-2x^(2))/(1+3x^(2))=
Text Solution
|
- Lt(x to oo) (1)/(n^(3)) sum(k=1)^(n)[k^(2)x]=
Text Solution
|
- Lt(x to oo)((8x-3)/(2x-1)-(4x^(2)+1)/(4x^(2)-1))=
Text Solution
|
- underset(x to 0)"Lt" ((1)/(logx)-x/(x-1))=
Text Solution
|
- underset(x to 0)"Lt" ((1)/(x)-(1)/(e^(x)-1))=
Text Solution
|
- Lt(x to (1)/(2))((x)/(2x-1)-(2x)/(4x^(2)-1))=
Text Solution
|
- Lt(x to 0) ((sinx)/(x^(2))-(1)/(x))=
Text Solution
|
- underset(x to oo)lim [sqrt(x^(2)+2x-1)-x]=
Text Solution
|
- underset(n to oo)"Lt" (sin n theta)/(sqrtn)=
Text Solution
|
- underset(x to oo)lim [sqrt(x+sqrt(x+sqrt(x)))-sqrtx]=
Text Solution
|
- Lt(x to oo)(sqrt(x^(4)+1)-sqrt(x^(4)-1))=
Text Solution
|