Home
Class 11
MATHS
Lt(x to oo) (1)/(n^(3)) sum(k=1)^(n)[k^(...

`Lt_(x to oo) (1)/(n^(3)) sum_(k=1)^(n)[k^(2)x]=`

A

x

B

`(x)/(2)`

C

`(x)/(3)`

D

`(x)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-II|100 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Lt_(x to oo)(sum n)/(1-n^(2))=

If 0 lt a< b then Lt_(x to oo) (a^(n+3)+b^(n+3))/(a^(n)+b^(n))=

Lt_(x to oo)[(1)/(n^(2)-1)+(2)/(n^(2)-1)+....+(n)/(n^(2)-1)]=

{:(" "Lt),(n rarr oo):} 1/n sum_(r=1)^(n)sec^(2).(rpi)/(4n)=

Lt_(x to oo) ((a_(1)^((1)/(x))+a_(1)^((1)/(x))+....+a_(n)^((1)/(x)))/(n))_(1)^(x)=