A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
AAKASH SERIES-LIMITS-PRACTICE EXERCISE
- Lt(x to oo) (5.2^(n+1)+2.3^(n+1))/(3.2^(n)-7.3^(n))=
Text Solution
|
- Lim(x to oo)(x^(3)sin((1)/(x))-2x^(2))/(1+3x^(2))=
Text Solution
|
- Lt(x to oo) (1)/(n^(3)) sum(k=1)^(n)[k^(2)x]=
Text Solution
|
- Lt(x to oo)((8x-3)/(2x-1)-(4x^(2)+1)/(4x^(2)-1))=
Text Solution
|
- underset(x to 0)"Lt" ((1)/(logx)-x/(x-1))=
Text Solution
|
- underset(x to 0)"Lt" ((1)/(x)-(1)/(e^(x)-1))=
Text Solution
|
- Lt(x to (1)/(2))((x)/(2x-1)-(2x)/(4x^(2)-1))=
Text Solution
|
- Lt(x to 0) ((sinx)/(x^(2))-(1)/(x))=
Text Solution
|
- underset(x to oo)lim [sqrt(x^(2)+2x-1)-x]=
Text Solution
|
- underset(n to oo)"Lt" (sin n theta)/(sqrtn)=
Text Solution
|
- underset(x to oo)lim [sqrt(x+sqrt(x+sqrt(x)))-sqrtx]=
Text Solution
|
- Lt(x to oo)(sqrt(x^(4)+1)-sqrt(x^(4)-1))=
Text Solution
|
- Lt(x to oo)(cossqrt(x+1)-cos sqrt(x))=
Text Solution
|
- Lt(x to 0)x"sin"(1)/(x)=
Text Solution
|
- Lt(x to oo)x cos ((pi)/(4x))sin((pi)/(4x))=
Text Solution
|
- Lt(x to 0)((tanx)/(x))^((1)/(x^(2)))=
Text Solution
|
- Lt(x to 0)((sinx)/(x))^((sinx)/(x-sinx))=
Text Solution
|
- underset(x to 1)"Lt" (log(2) 2x)^(log(x)5=
Text Solution
|
- underset(x to 0)"Lt" ((1+tan x)/(1+sin x))^("cosec x")=
Text Solution
|
- Lt(x to oo)((x^(2)+ax+b)/(x^(2)+bx+d))^(x+k)=
Text Solution
|