Home
Class 11
MATHS
Lt(x to oo)(sqrt(x^(4)+1)-sqrt(x^(4)-1))...

`Lt_(x to oo)(sqrt(x^(4)+1)-sqrt(x^(4)-1))=`

A

2

B

0

C

`(1)/(2)`

D

`(-1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-II|100 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits. Lt_(xtooo)(sqrt(x^(2)+1)-sqrt(x^(2)-1))

Lt_(x to oo) (sqrt(3+9x^(2))+sqrt(4x^(2)-1))/(sqrt(1+16x^(2))-sqrt(9x^(2)+2))=

Lt_(x to oo) {sqrt(x^(2)-sqrt(x^(4)+1))-x sqrt(2)}=

underset(x to oo)lim {sqrt(x^(2)+1)-sqrt(x^(2)-1)}=

Lt_(x to 2) sqrt(4-x^(2))=

Lt_(x to oo) (x)/(sqrt(ax^(2)+b)-sqrt(cx^(2)+b))=

underset(x to oo)lim (sqrt(1+9x^(2))+sqrt(x^(2)-1))/(sqrt(1+9x^(2))-sqrt(x^(2)-1))=

Lt_(x to oo)(cossqrt(x+1)-cos sqrt(x))=

underset(x to oo)lim (sqrt(x^(2)+1)-root3(x^(2)+1))/(root4(x^(4)+1)-root5(x^(4)+1)))=

underset(x to oo)lim (sqrt(1+25x^(2))+sqrt(9x^(2)-1))/(sqrt(1+25x^(2))-sqrt(9x^(2)-1))