Home
Class 11
MATHS
Lt(x to oo)(cossqrt(x+1)-cos sqrt(x))=...

`Lt_(x to oo)(cossqrt(x+1)-cos sqrt(x))=`

A

0

B

`oo`

C

cannot be determined

D

1

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-II|100 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Lt_(x to oo)(sqrt(x^(4)+1)-sqrt(x^(4)-1))=

Lt_(x to 0)(sqrt(1-cos2x))/(sqrt(2)x)=

Lt_(x to oo) {sqrt(x^(2)-sqrt(x^(4)+1))-x sqrt(2)}=

compute Lt_(x to oo) sqrt((x- sin x)/(x+cos x))

Evaluate Lt_(x to oo)(sqrt(x^(2) + x) - x)

Lt_(x to oo) (sqrt(x))/(sqrt(x+sqrt(x+sqrt(x))))=

Lt_(x to oo) (sqrt(3+9x^(2))+sqrt(4x^(2)-1))/(sqrt(1+16x^(2))-sqrt(9x^(2)+2))=

Lt_(x to oo) (x)/(sqrt(ax^(2)+b)-sqrt(cx^(2)+b))=

Show that : Lt_(x to 0)(sqrt(1+x)-sqrt(1+x^(2)))/(sqrt(1+x^(2))-sqrt(1-x))=1