Home
Class 11
MATHS
Lim(x to oo)[1+"sin"(a)/(n)]^(n) is eqal...

`Lim_(x to oo)[1+"sin"(a)/(n)]^(n)` is eqal to

A

`e^(a//2)`

B

`e^(a)`

C

e

D

`e^(1//a)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-II|100 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Lim_(x to oo)[((n)/(n+1))^(a)+"sin"(1)/(n)]^(n)=

lim_(x to oo) (( x +6)/(x + 1))^(x + 4) is equal to

Lt_(x to oo)(sum n)/(1-n^(2))=

Evaluate the following limits: lim_(x to oo)(q^(n)+p^(n))^(1//n), 0 lt p lt q

The value of lim_(|x| to oo) cos(tan^(-1)(sin(tan^(-1)x))) is equal to

Evaluate lim_(n to oo)[(1+(1)/(n))(1+2/n)* * * (1+(n)/(n))]^(1/n)

Evaluate the limit . lim_(n to oo) (1)/(n) [tan (pi)/(4n) + tan (2pi)/(4n) +………..tan (npi)/(4n)]