Home
Class 11
MATHS
Lt(x to 0)(sqrt(1-cos2x))/(sqrt(2)x)=...

`Lt_(x to 0)(sqrt(1-cos2x))/(sqrt(2)x)=`

A

`lambda`

B

`-1`

C

0

D

does not exist

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-II|100 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Lt_(x to 0) (1)/(2) (sqrt(1-cos2x))/(x)=

Lt_(x to 0) sqrt(|x|-x)=

Lt_(x to oo)(cossqrt(x+1)-cos sqrt(x))=

Lt_(x to 2) sqrt(4-x^(2))=

Lt_(x to 0)(1-cos(x^(0)))/(x^(2))=

Show that : Lt_(x to 0)(sqrt(1+x)-sqrt(1+x^(2)))/(sqrt(1+x^(2))-sqrt(1-x))=1

Show that : Lt_(x to a)(sqrt(a+2x)-sqrt(3x))/(sqrt(3a+x)-2sqrt(x))=(2)/(3 sqrt(3))

Lt_(x to 2) (x^(sqrt(2))-2^(sqrt(2)))/(x-2)=

If f(x)=x^(2), phi(a)=b^(2),f^(1)(a)=n phi^(1) and phi^(1)(a)=ne0 , then Lt_(x to a)(( sqrt(f(x))-a)/(sqrt(phi(x))-b))=

Find Lt_(xto0)(sqrt(1+x)-sqrt(1+x^(2)))/(sqrt(1-x^(2))-sqrt(1-x))