Home
Class 11
MATHS
Lt(x to -oo) (x^(3)"sin"(1)/(x)+x)/(1+|x...

`Lt_(x to -oo) (x^(3)"sin"(1)/(x)+x)/(1+|x|^(2))=`

A

0

B

1

C

`-1`

D

`-oo`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    AAKASH SERIES|Exercise EXERCISE-II|100 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Lim_(x to oo)(x^(3)sin((1)/(x))-2x^(2))/(1+3x^(2))=

Lt_(x to oo) 2^(x)sin((a)/(2^(x)))=

underset(x to -oo)"Lt" (x^(4).sin(1//x)+x^(2))/(1+|x|^(3))=

Lt_(x to oo) (1+e^(-x))^(e^(x)) =

Lt_(x to 0) (1)/(x) sin^(-1)((2x)/(1+x^(2)))=

Compute: Lt_(x to 0)x^(2) sin((1)/(x))

Lt_(x to oo)(1+(3)/(x))^(x//2)=

Lt_(x to oo)((8x-3)/(2x-1)-(4x^(2)+1)/(4x^(2)-1))=

Lt_(x to 0)x"sin"(1)/(x)=