A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
AAKASH SERIES-LIMITS-PRACTICE EXERCISE
- Lt(x to 0^(+))(3|x|+x)/(5|x|-3x)=
Text Solution
|
- underset(x to 0-)"Lt" (5|x|+2x)/(7|x|-3x)=
Text Solution
|
- Lt(x to 5^(+)){x-[x]}=
Text Solution
|
- Lt(x to 0) sqrt(|x|-x)=
Text Solution
|
- Statement-I : Lt(x to 0) ((Tan[e^(2)]x^(2)-Tan[-e^(2)]x^(2))/(sin^(2)x...
Text Solution
|
- If f(x)={{:((sin[x])/([x]),at[x]ne0),(0,at[x]=0):} then Lt(x to theta...
Text Solution
|
- Lt(x to0) (e^(1//x)-1)/(e^(1//x)+1)=
Text Solution
|
- Lt(x to 0)(x.e^((1)/(x)))/(1+e^((1)/(x)))=
Text Solution
|
- Lt(x to 0)(sinx)^(tanx)=
Text Solution
|
- Lt(x to (pi)/(2))(tanx)^(cosx)=
Text Solution
|
- Lt(x to 0)((1)/(x))^(1-cosx)=
Text Solution
|
- Lt(x to 0)log(2x)x=
Text Solution
|
- Lt(x to 0)(log(sinx)sin2x)=
Text Solution
|
- underset(x to oo)"Lt" ((x+6)/(x+1))^(x+4)=
Text Solution
|
- Lt(x to 0)(64)/(x^(4))(1-"cos"(x)/(2)-"cos"(x)/(4)+"cos"(x)/(2)."cos"(...
Text Solution
|
- Lt(x to (1)/(2)) (sin^(-1)x-(pi)/(6))/(2x-1)=
Text Solution
|
- If f(x)=x^(2), phi(a)=b^(2),f^(1)(a)=n phi^(1) and phi^(1)(a)=ne0, the...
Text Solution
|
- Let alpha and beta be the distinct roots of ax^(2)+bx+c=0," then "unde...
Text Solution
|
- Lt(x to 0)((1-cos2x)(3+cosx))/(x.tan4x)=
Text Solution
|
- If Deltax= |{:(e^(x),-1),(sinx-1,1):}| then Lt(x to 0)(Delta(x))/(x)=
Text Solution
|