Home
Class 12
MATHS
Evaluate. int(dx)/(sinx+sin2x)...

Evaluate. `int(dx)/(sinx+sin2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{dx}{\sin x + \sin 2x} \), we will follow these steps: ### Step 1: Rewrite \(\sin 2x\) We know that \(\sin 2x = 2 \sin x \cos x\). Thus, we can rewrite the integral as: \[ I = \int \frac{dx}{\sin x + 2 \sin x \cos x} \] ### Step 2: Factor out \(\sin x\) Now, we can factor \(\sin x\) from the denominator: \[ I = \int \frac{dx}{\sin x (1 + 2 \cos x)} \] ### Step 3: Rewrite the integral Next, we can rewrite the integral as: \[ I = \int \frac{1}{\sin x} \cdot \frac{dx}{1 + 2 \cos x} \] This can be expressed as: \[ I = \int \frac{\sin x \, dx}{\sin^2 x (1 + 2 \cos x)} \] ### Step 4: Substitute \(t = \cos x\) Let \(t = \cos x\), then \(dt = -\sin x \, dx\) or \(dx = -\frac{dt}{\sin x}\). Substituting this into the integral gives: \[ I = \int \frac{-dt}{(1 - t^2)(1 + 2t)} \] ### Step 5: Perform partial fraction decomposition We need to perform partial fraction decomposition on: \[ \frac{1}{(1 - t^2)(1 + 2t)} = \frac{A}{1 - t} + \frac{B}{1 + t} + \frac{C}{1 + 2t} \] Multiplying through by the denominator gives: \[ 1 = A(1 + t)(1 + 2t) + B(1 - t)(1 + 2t) + C(1 - t^2) \] ### Step 6: Solve for coefficients \(A\), \(B\), and \(C\) To find \(A\), \(B\), and \(C\), we can substitute convenient values for \(t\): 1. Set \(t = 1\) to find \(A\). 2. Set \(t = -1\) to find \(B\). 3. Set \(t = -\frac{1}{2}\) to find \(C\). After solving these equations, we find: - \(A = \frac{1}{6}\) - \(B = -\frac{1}{2}\) - \(C = \frac{4}{3}\) ### Step 7: Substitute back into the integral Now we can rewrite the integral using the coefficients: \[ I = \int \left( \frac{1/6}{1 - t} - \frac{1/2}{1 + t} + \frac{4/3}{1 + 2t} \right) dt \] ### Step 8: Integrate each term Integrating each term separately gives: \[ I = \frac{1}{6} \ln |1 - t| - \frac{1}{2} \ln |1 + t| + \frac{4}{3} \ln |1 + 2t| + C \] ### Step 9: Substitute back \(t = \cos x\) Finally, substituting back \(t = \cos x\) gives: \[ I = \frac{1}{6} \ln |1 - \cos x| - \frac{1}{2} \ln |1 + \cos x| + \frac{4}{3} \ln |1 + 2 \cos x| + C \] ### Final Answer Thus, the evaluated integral is: \[ I = \frac{1}{6} \ln |1 - \cos x| - \frac{1}{2} \ln |1 + \cos x| + \frac{4}{3} \ln |1 + 2 \cos x| + C \]
Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 04

    ICSE|Exercise SECTION .B. |10 Videos
  • SELF ASSESSMENT PAPER 04

    ICSE|Exercise SECTION .C.|12 Videos
  • SELF ASSESSMENT PAPER 03

    ICSE|Exercise Section -C|10 Videos
  • SELF ASSESSMENT PAPER 05

    ICSE|Exercise SECTION .C.|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(sinx+sin2x)\ dx

Evaluate: int1/(sinx+sin2x)\ dx

Evaluate: int1/(sin^2x+sin2x)dx

Evaluate: int1/(sinx-sin2x)dx

Evaluate: int1/(sinx-sin2x)dx

Evaluate: int(cosx)/(sin^2x+4sinx+5)dx

Evaluate: int(cosx)/(sin^2x+4sinx+5)\ dx

Evaluate: int(x+sinx)\ dx

Evaluate: int1/(sin^2x+sin2x)\ dx

Evaluate: int(sinx)/(2+sin2x)dx