Home
Class 12
MATHS
Find a unit vector perpendicular to the ...

Find a unit vector perpendicular to the vector `4hati + 3hatj + hatk` and `2hati-hatj+2hatk` Determine the sine angle between these two vectors.

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector perpendicular to the vectors \( \mathbf{A} = 4\hat{i} + 3\hat{j} + \hat{k} \) and \( \mathbf{B} = 2\hat{i} - \hat{j} + 2\hat{k} \), and to determine the sine of the angle between these two vectors, we can follow these steps: ### Step 1: Calculate the Cross Product The unit vector perpendicular to both vectors can be found using the cross product \( \mathbf{A} \times \mathbf{B} \). \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 3 & 1 \\ 2 & -1 & 2 \end{vmatrix} \] Calculating the determinant: \[ \mathbf{A} \times \mathbf{B} = \hat{i} \begin{vmatrix} 3 & 1 \\ -1 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 4 & 1 \\ 2 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 4 & 3 \\ 2 & -1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \( \hat{i} \): \[ 3 \cdot 2 - (-1) \cdot 1 = 6 + 1 = 7 \] 2. For \( \hat{j} \): \[ 4 \cdot 2 - 1 \cdot 2 = 8 - 2 = 6 \] 3. For \( \hat{k} \): \[ 4 \cdot (-1) - 3 \cdot 2 = -4 - 6 = -10 \] Thus, we have: \[ \mathbf{A} \times \mathbf{B} = 7\hat{i} - 6\hat{j} - 10\hat{k} \] ### Step 2: Calculate the Magnitude of the Cross Product Next, we find the magnitude of \( \mathbf{A} \times \mathbf{B} \): \[ |\mathbf{A} \times \mathbf{B}| = \sqrt{7^2 + (-6)^2 + (-10)^2} = \sqrt{49 + 36 + 100} = \sqrt{185} \] ### Step 3: Calculate the Unit Vector The unit vector \( \mathbf{N} \) perpendicular to both \( \mathbf{A} \) and \( \mathbf{B} \) is given by: \[ \mathbf{N} = \frac{\mathbf{A} \times \mathbf{B}}{|\mathbf{A} \times \mathbf{B}|} = \frac{7\hat{i} - 6\hat{j} - 10\hat{k}}{\sqrt{185}} = \frac{7}{\sqrt{185}}\hat{i} - \frac{6}{\sqrt{185}}\hat{j} - \frac{10}{\sqrt{185}}\hat{k} \] ### Step 4: Calculate the Magnitudes of Vectors A and B Now, we calculate the magnitudes of \( \mathbf{A} \) and \( \mathbf{B} \): \[ |\mathbf{A}| = \sqrt{4^2 + 3^2 + 1^2} = \sqrt{16 + 9 + 1} = \sqrt{26} \] \[ |\mathbf{B}| = \sqrt{2^2 + (-1)^2 + 2^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] ### Step 5: Calculate the Sine of the Angle Between the Vectors Using the formula for the sine of the angle \( \theta \) between two vectors: \[ |\mathbf{A} \times \mathbf{B}| = |\mathbf{A}| |\mathbf{B}| \sin \theta \] Substituting the values we have: \[ \sqrt{185} = \sqrt{26} \cdot 3 \cdot \sin \theta \] Thus, we can solve for \( \sin \theta \): \[ \sin \theta = \frac{\sqrt{185}}{3\sqrt{26}} \] ### Final Answers 1. The unit vector perpendicular to both vectors is: \[ \mathbf{N} = \frac{7}{\sqrt{185}}\hat{i} - \frac{6}{\sqrt{185}}\hat{j} - \frac{10}{\sqrt{185}}\hat{k} \] 2. The sine of the angle between the two vectors is: \[ \sin \theta = \frac{\sqrt{185}}{3\sqrt{26}} \]
Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 04

    ICSE|Exercise SECTION .C.|12 Videos
  • SELF ASSESSMENT PAPER 04

    ICSE|Exercise SECTION .C.|12 Videos
  • SELF ASSESSMENT PAPER 03

    ICSE|Exercise Section -C|10 Videos
  • SELF ASSESSMENT PAPER 05

    ICSE|Exercise SECTION .C.|12 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector perpendicular to both the vectors 2hati+3hatj+hatk) and (hati-hatj+2hatk) .

Find a unit vector perpendicular to both the vectors (2hati+3hatj+hatk) and (hati-hatj+2hatk) .

Find the unit vector perpendicular to the two vectors hati+2hatj-hatk and 2hati+3hatj+hatk .

Find a unit vector perpendicular to each of the vectors hati+2hatj-3hatk and hati-2hatj+hatk .

The unit vector perpendicular to the vectors 6hati+2hatj+3hatk and 3hati-6hatj-2hatk , is

Find a unit vector perpendicular to both the vectors hati-2hatj+hatk and hati+2hatj+hatk .

What is the unit vector perpendicular to each of the vectors 2hati-hatj+hatk and 3hati+4hatj-hatk ? Prove that the sine of the angle between these two vectors is sqrt(155/156)

Unit vector perpnicular to vector A=-3hati-2hatj -3hatk and 2hati + 4hatj +6hatk is

Find a unit vectro perpendicular to the vectors veca=3hati+2hatj-hatk and vecb=12hati+5hatj-5hatk Also determine the sine of the angle between veca and vecb .

Find the unit vector perpendicular to the vectors vecA=(hati+2hatj-3hatk)andvecB=(-hati+hatj-hatk)