Home
Class 12
MATHS
Show that "sin"^(-1)(sqrt(3))/2+"tan"^(-...

Show that `"sin"^(-1)(sqrt(3))/2+"tan"^(-1)1/(sqrt(3))=(2pi)/3`

Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 9

    ICSE|Exercise SECTION-B|9 Videos
  • SELF ASSESSMENT PAPER 9

    ICSE|Exercise SECTION C|10 Videos
  • SELF ASSESSMENT PAPER 2

    ICSE|Exercise Section - C|12 Videos
  • SPECIMEN QUESTION PAPER

    ICSE|Exercise Section C|8 Videos

Similar Questions

Explore conceptually related problems

A normal to parabola, whose inclination is 30^(@) , cuts it again at an angle of (a) tan^(-1)((sqrt(3))/(2)) (b) tan^(-1)((2)/(sqrt(3))) (c) tan^(-1)(2sqrt(3)) (d) tan^(-1)((1)/(2sqrt(3)))

A value of for which (2+3isintheta)/(1-2isintheta) purely imaginary, is : (1) pi/3 (2) pi/6 (3) sin^(-1)((sqrt(3))/4) (4) sin^(-1)(1/(sqrt(3)))

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

Show that 4sin27^0=(5+sqrt(5))^(1/2)-(3-sqrt(5))^(1/2)

int_0^(pi//2)1/(2+cos\ x)dx equals a. 1/3tan^(-1)(1/(sqrt(3))) b. 2/(sqrt(3))tan^(-1)(1/(sqrt(3))) c. sqrt(3)tan^(-1)(sqrt(3)) d. 2sqrt(3)tan^(-1)sqrt(3)

Find the principal value of sin^(-1)(-1/sqrt2)+tan^(-1)(-1/sqrt3)+sec^(-1)(2)

Find the value of tan^(-1)(-1/(sqrt(3)))+cot^(-1)((1)/(sqrt(3))) + tan^(-1)[sin((-pi)/(2))] .

Evaluate each of the following: cot^(-1)(1/(sqrt(3)))-cos e c^(-1)(-2)+sec^(-1)(2/(sqrt(3))) cot^(-1){2"cos"(sin^(-1)((sqrt(3))/2))}+ cos e c^(-1)(-2/(sqrt(3)))+2cot^(-1)(-1) tan^(-1)(1/(sqrt(3)))+cot^(-1)(1/(sqrt(3)))+tan^(-1)(sin(-pi/2))

Find the principal value of each of the following: (i) sin^(-1)(-(sqrt(3))/2) (ii) sin^(-1)(cos (pi/3)) (iii) sin^(-1)((sqrt(3)-1)/(2sqrt(2)))

Find the value of sin[tan^(- 1)(-sqrt(3))+cos^(- 1)((sqrt(3))/- 2)]