Home
Class 12
MATHS
Evaluate the following definite integral...

Evaluate the following definite integral: `int_(-pi)^(pi)(2x(1+sinx))/(1+cos^(2)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the definite integral \[ I = \int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} \, dx, \] we can break it down into manageable steps. ### Step 1: Split the Integral We can separate the integral into two parts: \[ I = \int_{-\pi}^{\pi} \frac{2x}{1+\cos^2 x} \, dx + \int_{-\pi}^{\pi} \frac{2x \sin x}{1+\cos^2 x} \, dx. \] ### Step 2: Analyze the First Integral Let’s denote the first integral as \( I_1 \): \[ I_1 = \int_{-\pi}^{\pi} \frac{2x}{1+\cos^2 x} \, dx. \] To determine if \( I_1 \) is zero, we check if the integrand is an odd function. The function \( f(x) = \frac{2x}{1+\cos^2 x} \) is odd because: \[ f(-x) = \frac{2(-x)}{1+\cos^2(-x)} = -\frac{2x}{1+\cos^2 x} = -f(x). \] Since the integral of an odd function over a symmetric interval around zero is zero, we have: \[ I_1 = 0. \] ### Step 3: Analyze the Second Integral Now, let’s denote the second integral as \( I_2 \): \[ I_2 = \int_{-\pi}^{\pi} \frac{2x \sin x}{1+\cos^2 x} \, dx. \] We check if \( I_2 \) is even or odd. The function \( g(x) = \frac{2x \sin x}{1+\cos^2 x} \) is odd because: \[ g(-x) = \frac{2(-x) \sin(-x)}{1+\cos^2(-x)} = \frac{-2x(-\sin x)}{1+\cos^2 x} = -\frac{2x \sin x}{1+\cos^2 x} = -g(x). \] Thus, \[ I_2 = 0. \] ### Step 4: Combine Results Since both \( I_1 \) and \( I_2 \) are zero, we conclude: \[ I = I_1 + I_2 = 0 + 0 = 0. \] ### Final Result Thus, the value of the definite integral is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 9

    ICSE|Exercise SECTION-B|9 Videos
  • SELF ASSESSMENT PAPER 9

    ICSE|Exercise SECTION C|10 Videos
  • SELF ASSESSMENT PAPER 2

    ICSE|Exercise Section - C|12 Videos
  • SPECIMEN QUESTION PAPER

    ICSE|Exercise Section C|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following definite integral: int_(pi//2)^pie^x((1+sin x)/(1+cos x))dx

Evaluate the following definite integral: int_(-pi//4)^(pi//4)1/(1+sin x)dx

Evaluate the following definite integral: int_0^(pi//4)x^2sin x\ dx

Evaluate the following definite integral: int_0^(pi//2)(sinx+cos x)dx

Evaluate the following definite integral: int_0^(pi//2)x^2sinx\ dx

Evaluate the following definite integral: int_0^(pi//2)xcosx\ dx

Evaluate the following integral: int_(-pi)^pi(2x(1+sinx))/(1+cos^2dx)dx

Evaluate the following definite integral: int_0^(pi//2)x^2cos2x\ dx

Evaluate the following definite integral: int_0^(pi//2)cos^3x\ dx

Evaluate the following definite integral: int_0^(pi//2)x^2cos^2x\ dx