Home
Class 12
MATHS
If veca+vecb+vecc=0,|veca|=3,|vecb|=5,|v...

If `veca+vecb+vecc=0,|veca|=3,|vecb|=5,|vecc|=7` find the angle between `veca` and `vecb`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 9

    ICSE|Exercise SECTION C|10 Videos
  • SELF ASSESSMENT PAPER 9

    ICSE|Exercise SECTION C|10 Videos
  • SELF ASSESSMENT PAPER 2

    ICSE|Exercise Section - C|12 Videos
  • SPECIMEN QUESTION PAPER

    ICSE|Exercise Section C|8 Videos

Similar Questions

Explore conceptually related problems

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

veca+vecb+vecc=vec0, |veca|=3, |vecb|=5,|vecc|=9 ,find the angle between veca and vecc .

If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then the angle between veca and vecb is

If three vectors veca, vecb,vecc are such that veca ne 0 and veca xx vecb = 2(veca xx vecc),|veca|=|vecc|=1, |vecb|=4 and the angle between vecb and vecc is cos^(-1)(1//4) , then vecb-2vecc= lambda veca where lambda is equal to:

If |veca|+|vecb|=|vecc|and veca+vecb=vecc then find the angle between veca and vecb .

Three vectors veca,vecb,vecc are such that veca xx vecb=4(veca xx vecc) and |veca|=|vecb|=1 and |vecc|=1/4 . If the angle between vecb and vecc is pi/3 then vecb is

If veca,vecb,vecc are unit vectors such that veca is perpendicular to vecb and vecc and |veca+vecb+vecc|=1 then the angle between vecb and vecc is (A) pi/2 (B) pi (C) 0 (D) (2pi)/3

If veca, vecb and vecc are such that [veca \ vecb \ vecc] =1, vecc= lambda (veca xx vecb) , angle between vecc and vecb is 2pi//3 , |veca|=sqrt2, |vecb|=sqrt3 and |vecc|=1/sqrt3 then the angle between veca and vecb is