Home
Class 12
MATHS
Prove that |{:(a-b-c, 2a, 2a), (2b, b-...

Prove that
`|{:(a-b-c, 2a, 2a), (2b, b-c-a, 2b), (2c, 2c, c-a-b):}|=(a+b+c)^(3)`

Promotional Banner

Topper's Solved these Questions

  • SUPPLEMENTARY EXAM QUESTION PAPER JULY - 2016

    SUNSTAR PUBLICATION|Exercise PART - D|10 Videos
  • P.U BOARD LATEST MODEL QUESTION PAPER - 3

    SUNSTAR PUBLICATION|Exercise PART-E|3 Videos
  • SUPPLEMENTARY EXAM QUESTION PAPER JULY -2014

    SUNSTAR PUBLICATION|Exercise PART -E|4 Videos

Similar Questions

Explore conceptually related problems

Without expanding the determinant, prove that {:|( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) |:} ={:|( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) |:}

Using the property of determinants prove that {:|( 3a,-a+b,-a+c),( -b+a, 3b,-b+c) ,( -c+a,-c+b,3c) |:} = 3( a+b+c) ( ab+bc+ca)

Prove that |{:(,1,a,a^(2)),(,1,b,b^(2)),(,1,c,c^(2)):}|=(a-b)(b-c)(c-a)

Prove that |(1,a^2,bc),(a,b^2,ca),(1,c^2,ab)|=(a-b)(b-c)(c-a)

a. Minimize z =-3x+4y subject to constraints. x+2yle8 3x+2yle12 xge0, yge0 by graphical method. b. Prove that {:abs((1,a,a^2),(1,b,b^2),(1,c ,c^2)):} = (a - b)(b-c)(c-a)

Prove that {:|( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) |:} =4a^(2) b^(2) c^(2)

Prove that {:|( a,a+b,a+b+c) ,( 2a,3a+2b,4a+3b+2c),( 3a,6a+3b,10a+6b+3c)|:}=a^(3)

|[1, a, a^2-b c],[1,b, b^2-c a],[1,c, c^2-a b]|=

Prove that |(-a^2,ab,ac),(bc,-b^2,bc),(ca,cb,-c^2)|=4a^(2)b^(2) c^(2) .

Prove that |(1,1,1),(a,b,c),(a^3,b^3,c^3)| = (a - b)(b-c)(c-a)(a+b+c) .