Home
Class 12
MATHS
If a(p+q)^2+2b p q+c=0 and a(p+r)^2+2b p...

If `a(p+q)^2+2b p q+c=0 and a(p+r)^2+2b p r+c=0 (a!=0)` , then which one is correct? a) `q r=p^2` b) `q r=p^2+c/a` c) none of these d) either a) or b)

A

`p^(2)+c/a`

B

`p^(2)=a/c`

C

`p^(2)+a/b`

D

`p^(2)+b/a`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|9 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|11 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos

Similar Questions

Explore conceptually related problems

If p/a + q/b + r/c=1 and a/p + b/q + c/r=0 , then the value of p^(2)/a^(2) + q^(2)/b^(2) + r^(2)/c^(2) is:

p+r+2q= 1 b. 2 c. 0 d. 4

If A B C~= P Q R and A B C is not congruent to R P Q , then which of the following not true: (a) B C=P Q (b) A C=P R (c) A B=P Q (d) Q R=B C

If the normals to the parabola y^2=4a x at three points (a p^2,2a p) and (a q^2,2a q) and (a r^2,2ar) are concurrent, then the common root of equations P x^2+q x+r=0 and a(b-c)x^2+b(c-a)x+c(a-b)=0 is (a) p (b) q (c) r (d) 1

If a!=p ,b!=q ,c!=r and |[p, b, c ],[a, q, c ],[a ,b, r]|=0, then find the value of p/(p-a)+q/(q-b)+r/(r-c)dot

|(a+1, a+2, a+p), (a+2, a+3, a+q) ,(a+3, a+4, a+r)|=0 , then p, q r are in (A) A P (B) G P (C) H P (D) none of these

If a , b and c b respectively the pth , qth and rth terms of an A.P. prove that a(q-r) +b(r-p) +c (p-q) =0

If the normals to the parabola y^2=4a x at three points (a p^2,2a p), and (a q^2,2a q) are concurrent, then the common root of equations P x^2+q x+r=0 and a(b-c)x^2+b(c-a)x+c(a-b)=0 is p (b) q (c) r (d) 1

If a,b,c, be the pth, qth and rth terms respectivley of a G.P., then the equation a^q b^r c^p x^2 +pqrx+a^r b^-p c^q=0 has (A) both roots zero (B) at least one root zero (C) no root zero (D) both roots unilty

If p+q+r=0=a+b+c , then the value of the determinant |[p a, q b, r c],[ q c ,r a, p b],[ r b, p c, q a]|i s (a) 0 (b) p a+q b+r c (c) 1 (d) none of these