Home
Class 12
MATHS
Prove that sum(r=0)^n^n Crsinr xcos(n-r)...

Prove that `sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot`

Text Solution

Verified by Experts

Let `P(n):{prod_(r=0)^(n)f_(r)(x)}^(')=sum_(i=1)^(n){f_(1)(x)f_(2)(x).....f_(1)(x)....f_(n)(x)}`
Step I For ` n =1` ,
LHS of Eq. (i) `={prod_(r=1)^(1)f_(r)f(x)}^(')={f_(1)(x)}^(')=f_(1)^(')(x)`
RHS of Eq. (i) `=sum_(i=1)^(1){f_1(x)f_(2)(x)...f_(1)^(')(x)... f_(1)(x)}`
which is true for `n=1`.
Step II Assume it is true for `n=k` , then
`P(k):{prod_(r=1)^(k)f_(r)(x)}^(')=sum_(i=1)^(k){f_1(x)f_2(x).....f_1(x)....f_k(x)}`
Step III For `n=k+1`,
LHS`={prod_(r=1)^((k+1))f_r(x)}={prod_(r=1)^(k)f_r(x).f_(k+1)(x)}^(')`
`=prod_(r=1)^(k)f_r(x).f_(k+1)^(')(x)+f_(k+1)(x){prod_(r=1)^(k)f_r(x)}^'`
`= prod_(r=1)^(k)f_r(x).f_(k+1)^(')(x)+f_(k+1)(x).sum_(i=1)^(k){f_1(x).f_2(x).....f_(k+1)^(')....f_(k)(x)}`
`={f_1(x)f_2(x)....f_k(x)}f_(k+1)^(')(x)+f_(k+1)(x) sum_(i=1)^(k){f_1(x)f_2(x)....f_(i) '(x).....f_(k)(x)}`
`= sum_(i=1)^(k+1){f_19x)f_2(x).....f_(i)'(x)....f_(k+1)(x)}=RHS`
This shows that the result is true for `n=k+1`. Hence , by the principle of mathematical induction , the result is true for all `n in N`.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Mathematical Induction Exercise 1: (Single Option Correct Tpye Questions)|3 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|3 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^n^n C_r3^r=4^n

Prove that sum_(r=0)^n3^r^n C_r=4^n .

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

Prove that sum_(r = 0)^n r^3 . C_r = n^2 (n +3).2^(n-3)

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^n C_r=3^n-1.

Prove that sum_(r=0)^n r(n-r)(^nC_ r)^2=n^2(^(2n-2)C_n)dot

Prove that sum_(r=0)^(n) 3^( r" "n)C_(r ) =4^(n) .

If x + y = 1 , prove that sum_(r=0)^(n) r""^(n)C_(r) x^(r ) y^(n-r) = nx .

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .