Home
Class 12
MATHS
Statement 1: if three points P ,Qa n ...

Statement 1: if three points `P ,Qa n dR` have position vectors ` vec a , vec b ,a n d vec c` , respectively, and `2 vec a+3 vec b-5 vec c=0,` then the points `P ,Q ,a n dR` must be collinear. Statement 2: If for three points `A ,B ,a n dC , vec A B=lambda vec A C ,` then points `A ,B ,a n dC` must be collinear.

A

Both Statement I and Statement II are correct and statement II is the correct explanation of statement I

B

Both statement I and statement II are correct but statement II is not the correct explanation of statement I

C

Statement I is correct but statement II is incorrect

D

Statement II is correct but statement I is incorrect

Text Solution

Verified by Experts

The correct Answer is:
A

`2a+3b-5c=0`
`3(b-a)=5(c-a)`
`implies AB=(5)/(3)AC`
Hence, AB and AC must be parallel since there is a common point A. the points A,B and C must be collinear.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|11 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|1 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|7 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Prove that the points A ,Ba n d C with position vectors vec a , vec ba n d vec c respectively are collinear if and only if vec axx vec b+ vec bxx vec c+ vec cxx vec a= vec0dot

Show that the four points A ,B , Ca n dD with position vectors vec a , vec b , vec c and vec d respectively are coplanar if and only if 3 vec a-2 vec b+ vec c-2 vec d=0.

Show that the points A ,B ,C with position vectors -2 vec a+3 vec b+5 vec c , vec a+2 vec b+3 vec c a n d7 vec a- vec c respectively, are collinear.

Show that the point A ,B ,C with position vectors vec a-2 vec b+3 vec c ,2 vec a+3 vec b-4 vec c and -7 vec b+10 vec c are collinear.

Show that the point A ,B ,C with position vectors vec a-2 vec b+3 vec c ,2 vec a+3 vec b-4 vec c and -7 vec b+10 vec c are collinear.

Show that the points with position vectors vec a-2 vec b+3 vec c ,\ -2 vec a+3 vec b- vec c\ a n d\ 4 vec a-7 vec b+7 vec c are collinear.

If the position vectors of the points A(3,4),B(5,-6) and C (4,-1) are vec a , vec b , vec c respectively compute vec a+2 vec b-3 vec c

A ,B ,C and D have position vectors vec a , vec b , vec ca n d vec d , respectively, such that vec a- vec b=2( vec d- vec c)dot Then a. A Ba n dC D bisect each other b. B Da n dA C bisect each other c. A Ba n dC D trisect each other d. B Da n dA C trisect each other

Vectors drawn the origin O to the points A , Ba n d C are respectively vec a , vec ba n d vec4a- vec3bdot find vec A Ca n d vec B Cdot

If vec a ,\ vec b ,\ vec c are position vectors o the point A ,\ B ,\ a n d\ C respectively, write the value of vec A B+ vec B C+ vec A Cdot