Home
Class 12
MATHS
If b-c,2b-lambda,b-a " are in HP, then "...

If `b-c,2b-lambda,b-a " are in HP, then " a-(lambda)/(2),b-(lambda)/(2),c-(lambda)/(2)` are is

A

AP

B

GP

C

HP

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the type of progression for the terms \( a - \frac{\lambda}{2}, b - \frac{\lambda}{2}, c - \frac{\lambda}{2} \) given that \( b - c, 2b - \lambda, b - a \) are in Harmonic Progression (HP). ### Step-by-Step Solution: 1. **Understanding Harmonic Progression (HP)**: - If three terms \( x, y, z \) are in HP, then the reciprocals \( \frac{1}{x}, \frac{1}{y}, \frac{1}{z} \) are in Arithmetic Progression (AP). - Thus, for our terms \( b - c, 2b - \lambda, b - a \) to be in HP, we can write: \[ \frac{1}{b - c}, \frac{1}{2b - \lambda}, \frac{1}{b - a} \] must be in AP. 2. **Setting Up the Equation**: - The condition for three numbers \( x, y, z \) to be in AP is: \[ 2y = x + z \] Applying this to our terms: \[ 2(2b - \lambda) = (b - c) + (b - a) \] Simplifying this gives: \[ 4b - 2\lambda = 2b - (c + a) \] 3. **Rearranging the Equation**: - Rearranging the above equation: \[ 4b - 2b + c + a = 2\lambda \] This simplifies to: \[ 2b + a + c = 2\lambda \] Thus, we can express \( \lambda \) as: \[ \lambda = \frac{2b + a + c}{2} \] 4. **Substituting Back**: - Now we substitute \( \lambda \) into the terms \( a - \frac{\lambda}{2}, b - \frac{\lambda}{2}, c - \frac{\lambda}{2} \): \[ a - \frac{2b + a + c}{4}, \quad b - \frac{2b + a + c}{4}, \quad c - \frac{2b + a + c}{4} \] 5. **Simplifying Each Term**: - For \( a - \frac{2b + a + c}{4} \): \[ = \frac{4a - (2b + a + c)}{4} = \frac{3a - 2b - c}{4} \] - For \( b - \frac{2b + a + c}{4} \): \[ = \frac{4b - (2b + a + c)}{4} = \frac{2b - a - c}{4} \] - For \( c - \frac{2b + a + c}{4} \): \[ = \frac{4c - (2b + a + c)}{4} = \frac{3c - 2b - a}{4} \] 6. **Final Form**: - Thus, we have the three terms: \[ \frac{3a - 2b - c}{4}, \quad \frac{2b - a - c}{4}, \quad \frac{3c - 2b - a}{4} \] - Now, we check if these terms form a geometric progression (GP). 7. **Condition for GP**: - For three terms \( x, y, z \) to be in GP, the condition is: \[ y^2 = xz \] - Substituting our terms into this condition will confirm if they are in GP. ### Conclusion: By following the above steps, we conclude that \( a - \frac{\lambda}{2}, b - \frac{\lambda}{2}, c - \frac{\lambda}{2} \) are in **Geometric Progression (GP)**.

To solve the problem, we need to determine the type of progression for the terms \( a - \frac{\lambda}{2}, b - \frac{\lambda}{2}, c - \frac{\lambda}{2} \) given that \( b - c, 2b - \lambda, b - a \) are in Harmonic Progression (HP). ### Step-by-Step Solution: 1. **Understanding Harmonic Progression (HP)**: - If three terms \( x, y, z \) are in HP, then the reciprocals \( \frac{1}{x}, \frac{1}{y}, \frac{1}{z} \) are in Arithmetic Progression (AP). - Thus, for our terms \( b - c, 2b - \lambda, b - a \) to be in HP, we can write: \[ ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|11 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

If sin2A=lambdasin2B , then write the value of (lambda+1)/(lambda-1) .

Let a,b,c be the sides of a triangle. No two of them are equal and lambda in R If the roots of the equation x^2+2(a+b+c)x+3lambda(ab+bc+ca)=0 are real, then (a) lambda 5/3 (c) lambda in (1/5,5/3) (d) lambda in (4/3,5/3)

If a,b,c are in AP and (a+2b-c)(2b+c-a)(c+a-b)=lambdaabc , then lambda is

A straight line L cuts the lines A B ,A Ca n dA D of a parallelogram A B C D at points B_1, C_1a n dD_1, respectively. If ( vec A B)_1,lambda_1 vec A B ,( vec A D)_1=lambda_2 vec A Da n d( vec A C)_1=lambda_3 vec A C , then prove that 1/(lambda_3)=1/(lambda_1)+1/(lambda_2) .

Which of the following is/are possible values of radius of stable orbit of hydrogen atom ? (a) lambda/(2pi) , (b) (3lambda)/(4pi) , (c ) lambda/pi , (d) (5lambda)/(4pi)

Let alpha and beta be the values of x obtained form the equation lambda^(2) (x^(2)-x) + 2lambdax +3 =0 and if lambda_(1),lambda_(2) be the two values of lambda for which alpha and beta are connected by the relation alpha/beta + beta/alpha = 4/3 . then find the value of (lambda_(1)^(2))/(lambda_(2)) + (lambda_(2)^(2))/(lambda_(1)) and (lambda_(1)^(2))/lambda_(2)^(2) + (lambda_(2)^(2))/(lambda_(1)^(2))

If |(a^2,b^2,c^2),((a+lambda)^2,(b+lambda)^2,(c+lambda)^2),((a-lambda)^2,(b-lamda)^2,(c-lambda)^2)|=klambda|(a^2,b^2,c^2),(a,b,c),(1,1,1)|lambda!=0 then k is equal to :

If |(a^2,b^2,c^2),((a+lambda)^2,(b+lambda)^2,(c+lambda)^2),((a-lambda)^2,(b-lamda)^2,(c-lambda)^2)|=klambda|(a^2,b^2,c^2),(a,b,c),(1,1,1)|lambda!=0 then k is equal to : (A) 4 lambda abc (B) -4 lambda abc (C) 4 lambda^2 (D) -4 lambda^2

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C , where A, B and C are matrices then find matrices B and C.

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is

ARIHANT MATHS ENGLISH-SEQUENCES AND SERIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If b-c,2b-lambda,b-a " are in HP, then " a-(lambda)/(2),b-(lambda)/(2)...

    Text Solution

    |

  2. Let a,b,c be in A.P. and |a|lt1,|b|lt1|c|lt1.ifx=1+a+a^(2)+ . . . ."to...

    Text Solution

    |

  3. about to only mathematics

    Text Solution

    |

  4. If a1, a2, a3, be terms of an A.P. and (a1+a2+.....+ap)/(a1+a2+.....+...

    Text Solution

    |

  5. If a1, a2, a3,.....an are in H.P. and a1 a2+a2 a3+a3 a4+.......a(n-1...

    Text Solution

    |

  6. Let V(r ) denotes the sum of the first r terms of an arithmetic progre...

    Text Solution

    |

  7. Let Vr denote the sum of the first r terms of an arithmetic progressio...

    Text Solution

    |

  8. Let V(r) denote the sum of the first r terms of an arithmetic progress...

    Text Solution

    |

  9. LetA(1),G(1),H(1) denote the arithmetic, geometric and harmonic means ...

    Text Solution

    |

  10. Let A1 , G1, H1denote the arithmetic, geometric and harmonic means re...

    Text Solution

    |

  11. LetA(1),G(1),H(1) denote the arithmetic, geometric and harmonic means ...

    Text Solution

    |

  12. In a G.P of positive terms if any term is equal to the sum of the next...

    Text Solution

    |

  13. Suppose four distinct positive numbers a(1),a(2),a(3),a(4) are in G.P....

    Text Solution

    |

  14. The first two terms of a geometric progression add up to 12. The sum o...

    Text Solution

    |

  15. If the sum of first n terms of an A.P. is cn^(2) then the sum of squar...

    Text Solution

    |

  16. The sum to infinity of the series 1+2/3+6/3^2+14/3^4+...is

    Text Solution

    |

  17. Let Sk,k=1, 2, …. 100 denote the sum of the infinite geometric series ...

    Text Solution

    |

  18. Let a1, a2, a3, ,a(11) be real numbers satisfying a1=15 , 27-2a2>0 a ...

    Text Solution

    |

  19. A person is to count 4500 currency notes. Let an denote the number of ...

    Text Solution

    |

  20. The minimum value of the sum of real numbers a^-5, a^-4, 3a^-3, 1,a^8 ...

    Text Solution

    |

  21. A man saves ₹ 200 in each of the first three months of his servies.In ...

    Text Solution

    |