Home
Class 12
MATHS
If x=111"...."(20 digits),y=333"...."(10...

If `x=111"...."(20 digits),y=333"...."(10digits) and z=222".....2"(10 digits), then (x-y^(2))/(z)` equals.

A

`(1)/(2)`

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((x - y^2) / z\) where: - \(x = 111...1\) (20 digits) - \(y = 333...3\) (10 digits) - \(z = 222...2\) (10 digits) ### Step 1: Express \(x\), \(y\), and \(z\) in a mathematical form. 1. **Finding \(x\)**: - \(x\) consists of 20 digits of 1. - This can be expressed as: \[ x = \frac{10^{20} - 1}{9} \] 2. **Finding \(y\)**: - \(y\) consists of 10 digits of 3. - This can be expressed as: \[ y = 3 \times \frac{10^{10} - 1}{9} = \frac{3(10^{10} - 1)}{9} = \frac{10^{10} - 1}{3} \] 3. **Finding \(z\)**: - \(z\) consists of 10 digits of 2. - This can be expressed as: \[ z = 2 \times \frac{10^{10} - 1}{9} \] ### Step 2: Substitute \(x\), \(y\), and \(z\) into the expression \((x - y^2) / z\). 1. **Calculate \(y^2\)**: \[ y^2 = \left(\frac{10^{10} - 1}{3}\right)^2 = \frac{(10^{10} - 1)^2}{9} \] 2. **Substituting into the expression**: \[ \frac{x - y^2}{z} = \frac{\frac{10^{20} - 1}{9} - \frac{(10^{10} - 1)^2}{9}}{2 \times \frac{10^{10} - 1}{9}} \] 3. **Simplifying the numerator**: \[ = \frac{10^{20} - 1 - (10^{10} - 1)^2}{2(10^{10} - 1)} \] 4. **Expanding \((10^{10} - 1)^2\)**: \[ (10^{10} - 1)^2 = 10^{20} - 2 \times 10^{10} + 1 \] 5. **Substituting this back into the expression**: \[ = \frac{10^{20} - 1 - (10^{20} - 2 \times 10^{10} + 1)}{2(10^{10} - 1)} \] \[ = \frac{10^{20} - 1 - 10^{20} + 2 \times 10^{10} - 1}{2(10^{10} - 1)} \] \[ = \frac{2 \times 10^{10} - 2}{2(10^{10} - 1)} \] \[ = \frac{2(10^{10} - 1)}{2(10^{10} - 1)} = 1 \] ### Final Result: \[ \frac{x - y^2}{z} = 1 \]

To solve the problem, we need to find the value of \((x - y^2) / z\) where: - \(x = 111...1\) (20 digits) - \(y = 333...3\) (10 digits) - \(z = 222...2\) (10 digits) ### Step 1: Express \(x\), \(y\), and \(z\) in a mathematical form. ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|11 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

If x = (100)^(a), y = (10000)^(b) and z = (10)^(c) , find "log" (10 sqrt(y))/(x^(2)z^(3)) in terms of a, b and c.

If the number of solutions of the equation x+y+z=20, where 1 le x lt y lt z and x, y, z in I is k, then (k)/(10) is equal to

If x = 10a, y = 3b , z = 7c and x : y : z = 10 : 3 : 7 , then (7x + 2y + 5z)/(8a + b + 3c) =

If the system of equations, 2x + 3y-z = 0, x + ky -2z = 0 " and " 2x-y+z = 0 has a non-trivial solution (x, y, z), then (x)/(y) + (y)/(z) + (z)/(x) + k is equal to

Given x = log_(10)12, y = log_(4)2 xx log_(10)9 and z = log_(10) 0.4 , find : (i) x - y - z (ii) 13^(x - y - z)

If x, y and z are the roots of the equation 2t^(3)-(tan[x+y+z]pi)t^(2)-11t+2020=0 , then |(x,y,z),(y,z,x),(z,x,y)| is equal to (where, [x] denotes the greatest integral value less than or equal to x)

If x= 10^(1.4), y = 10^(0.7) , and x^(z) = y^(3) , then what is the value of z?

Given a system of equations in x,y,z : x+y+z=6,x+2y+3z=10 and x+2y+az=b . If this system has infinite number of solutions, then a^(2)+b= ……….

If x, y and z are integers, is x even? (1) 10^(x)=(4^(y))(5^(z)) (2) 3^(x+5)=27^(y+1)

The value of the determinant |{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| is equal to

ARIHANT MATHS ENGLISH-SEQUENCES AND SERIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If x=111"...."(20 digits),y=333"...."(10digits) and z=222".....2"(10 d...

    Text Solution

    |

  2. Let a,b,c be in A.P. and |a|lt1,|b|lt1|c|lt1.ifx=1+a+a^(2)+ . . . ."to...

    Text Solution

    |

  3. about to only mathematics

    Text Solution

    |

  4. If a1, a2, a3, be terms of an A.P. and (a1+a2+.....+ap)/(a1+a2+.....+...

    Text Solution

    |

  5. If a1, a2, a3,.....an are in H.P. and a1 a2+a2 a3+a3 a4+.......a(n-1...

    Text Solution

    |

  6. Let V(r ) denotes the sum of the first r terms of an arithmetic progre...

    Text Solution

    |

  7. Let Vr denote the sum of the first r terms of an arithmetic progressio...

    Text Solution

    |

  8. Let V(r) denote the sum of the first r terms of an arithmetic progress...

    Text Solution

    |

  9. LetA(1),G(1),H(1) denote the arithmetic, geometric and harmonic means ...

    Text Solution

    |

  10. Let A1 , G1, H1denote the arithmetic, geometric and harmonic means re...

    Text Solution

    |

  11. LetA(1),G(1),H(1) denote the arithmetic, geometric and harmonic means ...

    Text Solution

    |

  12. In a G.P of positive terms if any term is equal to the sum of the next...

    Text Solution

    |

  13. Suppose four distinct positive numbers a(1),a(2),a(3),a(4) are in G.P....

    Text Solution

    |

  14. The first two terms of a geometric progression add up to 12. The sum o...

    Text Solution

    |

  15. If the sum of first n terms of an A.P. is cn^(2) then the sum of squar...

    Text Solution

    |

  16. The sum to infinity of the series 1+2/3+6/3^2+14/3^4+...is

    Text Solution

    |

  17. Let Sk,k=1, 2, …. 100 denote the sum of the infinite geometric series ...

    Text Solution

    |

  18. Let a1, a2, a3, ,a(11) be real numbers satisfying a1=15 , 27-2a2>0 a ...

    Text Solution

    |

  19. A person is to count 4500 currency notes. Let an denote the number of ...

    Text Solution

    |

  20. The minimum value of the sum of real numbers a^-5, a^-4, 3a^-3, 1,a^8 ...

    Text Solution

    |

  21. A man saves ₹ 200 in each of the first three months of his servies.In ...

    Text Solution

    |