Home
Class 12
MATHS
If x > 0, y > 0, z>0 and x + y + z = 1 t...

If `x > 0, y > 0, z>0 and x + y + z = 1` then the minimum value of `x/(2-x)+y/(2-y)+z/(2-z)` is:

A

(a) `0.2`

B

(b) `0.4`

C

(c) `0.6`

D

(d) `0.8`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( E = \frac{x}{2-x} + \frac{y}{2-y} + \frac{z}{2-z} \) given that \( x + y + z = 1 \) and \( x, y, z > 0 \), we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ E = \frac{x}{2-x} + \frac{y}{2-y} + \frac{z}{2-z} \] ### Step 2: Apply the Cauchy-Schwarz Inequality Using the Cauchy-Schwarz inequality, we can write: \[ \left( \frac{x}{2-x} + \frac{y}{2-y} + \frac{z}{2-z} \right) \left( (2-x) + (2-y) + (2-z) \right) \geq (x + y + z)^2 \] Substituting \( x + y + z = 1 \): \[ E \cdot (6 - (x + y + z)) \geq 1^2 \] This simplifies to: \[ E \cdot 5 \geq 1 \] Thus, \[ E \geq \frac{1}{5} \] ### Step 3: Find the Minimum Value To find the minimum value, we need to check if this bound can be achieved. We can set \( x = y = z \) since they are symmetric in the expression. Given \( x + y + z = 1 \), we can set: \[ x = y = z = \frac{1}{3} \] Now substituting back into the expression: \[ E = 3 \cdot \frac{\frac{1}{3}}{2 - \frac{1}{3}} = 3 \cdot \frac{\frac{1}{3}}{\frac{5}{3}} = 3 \cdot \frac{1}{5} = \frac{3}{5} \] ### Step 4: Conclusion Thus, the minimum value of \( E \) is: \[ \frac{3}{5} \] ### Final Answer The minimum value of \( \frac{x}{2-x} + \frac{y}{2-y} + \frac{z}{2-z} \) is \( \frac{3}{5} \). ---

To find the minimum value of the expression \( E = \frac{x}{2-x} + \frac{y}{2-y} + \frac{z}{2-z} \) given that \( x + y + z = 1 \) and \( x, y, z > 0 \), we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ E = \frac{x}{2-x} + \frac{y}{2-y} + \frac{z}{2-z} \] ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|11 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

If xyz = 1 and x, y, z gt 0 then the minimum value of the expression (x+2y)(y+2z)(z+2x) is

If xyz=(1-x)(1-y)(1-z) Where 0<=x,y, z<=1 , then the minimum value of x(1-z)+y (1-x)+ z(1-y) is

If x, y, z are integers such that x >=0, y >=1, z >=2 and x + y + z = 15 , then the number of values of ordered triplets (x,y,z) are

If x,y,z gt 0 and x + y + z = 1, the prove that (2x)/(1 - x) + (2y)/(1 - y) + (2z)/(1 - z) ge 3 .

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

If x^(3) + y^(3) + z^(3) = 3xyz and x + y + z = 0 , find the value of : ((x+y)^(2))/(xy) + ((y+z)^(2))/(yz) + ((z+x)^(2))/(zx)

Given that x ,y ,z are positive real such that x y z=32. If the minimum value of x^2+4x y+4y^2+2z^2 is equal m , then the value of m//16 is.

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(y-z)+cot^(-1)(z x+1)/(z-x)

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(z y-z)+cot^(-1)(z x+1)/(z-x)

If x+y+z=1 , then the minimum value of xy(x+y)^(2)+yz(y+z)^(2)+zx(z+x)^(2) is , where x,y,z inR^(+)

ARIHANT MATHS ENGLISH-SEQUENCES AND SERIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If x > 0, y > 0, z>0 and x + y + z = 1 then the minimum value of x/(2-...

    Text Solution

    |

  2. Let a,b,c be in A.P. and |a|lt1,|b|lt1|c|lt1.ifx=1+a+a^(2)+ . . . ."to...

    Text Solution

    |

  3. about to only mathematics

    Text Solution

    |

  4. If a1, a2, a3, be terms of an A.P. and (a1+a2+.....+ap)/(a1+a2+.....+...

    Text Solution

    |

  5. If a1, a2, a3,.....an are in H.P. and a1 a2+a2 a3+a3 a4+.......a(n-1...

    Text Solution

    |

  6. Let V(r ) denotes the sum of the first r terms of an arithmetic progre...

    Text Solution

    |

  7. Let Vr denote the sum of the first r terms of an arithmetic progressio...

    Text Solution

    |

  8. Let V(r) denote the sum of the first r terms of an arithmetic progress...

    Text Solution

    |

  9. LetA(1),G(1),H(1) denote the arithmetic, geometric and harmonic means ...

    Text Solution

    |

  10. Let A1 , G1, H1denote the arithmetic, geometric and harmonic means re...

    Text Solution

    |

  11. LetA(1),G(1),H(1) denote the arithmetic, geometric and harmonic means ...

    Text Solution

    |

  12. In a G.P of positive terms if any term is equal to the sum of the next...

    Text Solution

    |

  13. Suppose four distinct positive numbers a(1),a(2),a(3),a(4) are in G.P....

    Text Solution

    |

  14. The first two terms of a geometric progression add up to 12. The sum o...

    Text Solution

    |

  15. If the sum of first n terms of an A.P. is cn^(2) then the sum of squar...

    Text Solution

    |

  16. The sum to infinity of the series 1+2/3+6/3^2+14/3^4+...is

    Text Solution

    |

  17. Let Sk,k=1, 2, …. 100 denote the sum of the infinite geometric series ...

    Text Solution

    |

  18. Let a1, a2, a3, ,a(11) be real numbers satisfying a1=15 , 27-2a2>0 a ...

    Text Solution

    |

  19. A person is to count 4500 currency notes. Let an denote the number of ...

    Text Solution

    |

  20. The minimum value of the sum of real numbers a^-5, a^-4, 3a^-3, 1,a^8 ...

    Text Solution

    |

  21. A man saves ₹ 200 in each of the first three months of his servies.In ...

    Text Solution

    |