Home
Class 12
MATHS
The value of (1)/((1+a)(2+a))+(1)/((2+a)...

The value of `(1)/((1+a)(2+a))+(1)/((2+a)(3+a))+(1)/((3+a)(4+a))"......." " upto " oo` is (where, a is constant)

A

A. `(1)/(1+a)`

B

B. `(2)/(1+a)`

C

C. `oo`

D

D. None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the infinite series: \[ S = \frac{1}{(1+a)(2+a)} + \frac{1}{(2+a)(3+a)} + \frac{1}{(3+a)(4+a)} + \ldots \] ### Step 1: Rewrite the general term The general term of the series can be expressed as: \[ \frac{1}{(n+a)((n+1)+a)} = \frac{1}{(n+a)(n+1+a)} \] ### Step 2: Use partial fractions We can use partial fractions to simplify the term: \[ \frac{1}{(n+a)(n+1+a)} = \frac{A}{n+a} + \frac{B}{n+1+a} \] To find \(A\) and \(B\), we multiply through by the denominator \((n+a)(n+1+a)\): \[ 1 = A(n+1+a) + B(n+a) \] Expanding this gives: \[ 1 = An + A + Bn + Ba \] Combining like terms: \[ 1 = (A+B)n + (A + Ba) \] This must hold for all \(n\), so we set up the system of equations: 1. \(A + B = 0\) 2. \(A + Ba = 1\) From the first equation, we have \(B = -A\). Substituting into the second equation gives: \[ A - Aa = 1 \implies A(1-a) = 1 \implies A = \frac{1}{1-a} \] Thus, \(B = -\frac{1}{1-a}\). ### Step 3: Rewrite the series using partial fractions Now we can rewrite the general term: \[ \frac{1}{(n+a)(n+1+a)} = \frac{1}{1-a} \left( \frac{1}{n+a} - \frac{1}{n+1+a} \right) \] ### Step 4: Write the series Substituting this back into the series gives: \[ S = \frac{1}{1-a} \left( \left( \frac{1}{1+a} - \frac{1}{2+a} \right) + \left( \frac{1}{2+a} - \frac{1}{3+a} \right) + \left( \frac{1}{3+a} - \frac{1}{4+a} \right) + \ldots \right) \] ### Step 5: Recognize the telescoping nature Notice that this is a telescoping series. Most terms will cancel out: \[ S = \frac{1}{1-a} \left( \frac{1}{1+a} - \lim_{n \to \infty} \frac{1}{n+1+a} \right) \] As \(n \to \infty\), \(\frac{1}{n+1+a} \to 0\). Thus, we have: \[ S = \frac{1}{1-a} \cdot \frac{1}{1+a} \] ### Step 6: Final expression Combining the fractions gives: \[ S = \frac{1}{(1+a)(1-a)} = \frac{1}{1-a^2} \] ### Conclusion Thus, the value of the infinite series is: \[ S = \frac{1}{1+a} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|8 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

The value of (0.16)^("log"_(2.5)((1)/(3) + (1)/(3^(2)) + (1)/(3^(3)) + …."to" oo)) , is

Find the sum (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+.......... upto 99 terms.

(1)/(4)+(1)/(3)((1)/(4))^(3)+(1)/(5)((1)/(4))^(5)+…..oo=…….

Find the value of 2+1/(2+1/(2+1/(2+oo)))

Find the value of 2+1/(2+1/(2+1/(2+oo)))

Find (1)/(3)+(1)/(2.3^(2))+(1)/(3.3^(3))+(1)/(4.3^(4))+….oo=?

If |x|gt1 ,then sum of the series (1)/(1+x)+(2)/(1+x^(2))+(2^(2))/(1+x^(4))+(2^(3))/(1+x^(8))+"......"" upto terms "oo is (1)/(x-lambda) ,then the value of lambda is

The value of tan sum_(r=1)^oo tan^-1 (4/(4r^2 +3))=

Show that X^((1)/(2))*X^((1)/(4))*X^((1)/(8)) ... Upto oo = X

(1)/(3)-(1)/(2).(1)/(9)+(1)/(3).(1)/(27)-(1)/(4).(1)/(81)+….oo=