Home
Class 12
MATHS
If 0ltxlt(pi)/(2), then the minimum valu...

If `0ltxlt(pi)/(2)`, then the minimum value of `2(sinx+cosx+cosec 2x)^3 ` is

A

(a) 27

B

(b) 13.5

C

(c) 6.75

D

(d) 0

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( 2(\sin x + \cos x + \csc 2x)^3 \) for \( 0 < x < \frac{\pi}{2} \), we can follow these steps: ### Step 1: Understand the expression We need to minimize the expression \( 2(\sin x + \cos x + \csc 2x)^3 \). ### Step 2: Use the relationship for \(\csc 2x\) Recall that \( \csc 2x = \frac{1}{\sin 2x} \) and \( \sin 2x = 2 \sin x \cos x \). Therefore, we can rewrite \(\csc 2x\) as: \[ \csc 2x = \frac{1}{2 \sin x \cos x} \] ### Step 3: Substitute \(\csc 2x\) into the expression Now, substitute this back into the original expression: \[ \sin x + \cos x + \csc 2x = \sin x + \cos x + \frac{1}{2 \sin x \cos x} \] ### Step 4: Apply the Arithmetic Mean-Geometric Mean (AM-GM) Inequality We can apply the AM-GM inequality to the three terms \(\sin x\), \(\cos x\), and \(\frac{1}{2 \sin x \cos x}\): \[ \frac{\sin x + \cos x + \frac{1}{2 \sin x \cos x}}{3} \geq \sqrt[3]{\sin x \cos x \cdot \frac{1}{2 \sin x \cos x}} = \sqrt[3]{\frac{1}{2}} \] ### Step 5: Simplify the inequality This simplifies to: \[ \sin x + \cos x + \frac{1}{2 \sin x \cos x} \geq 3 \sqrt[3]{\frac{1}{2}} \] ### Step 6: Cube both sides Cubing both sides gives: \[ \left(\sin x + \cos x + \frac{1}{2 \sin x \cos x}\right)^3 \geq \left(3 \sqrt[3]{\frac{1}{2}}\right)^3 = 27 \cdot \frac{1}{2} = \frac{27}{2} \] ### Step 7: Multiply by 2 Now, we multiply the entire inequality by 2: \[ 2\left(\sin x + \cos x + \csc 2x\right)^3 \geq 27 \] ### Step 8: Conclusion Thus, the minimum value of \( 2(\sin x + \cos x + \csc 2x)^3 \) is \( 27 \). ### Final Answer The minimum value is \( \boxed{27} \). ---
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

If 0ltxlt(pi)/(2) , then the minimum value of (sinx+cosx+cosec2x) ,is

The minimum value of 2^sinx+2^cosx

If 0ltxlt(pi)/(2) then the minimum value of (cos^(3)x)/(sinx)+(sin^(3))/(cosx)(x)/(x) , is

The minimum value of |sinx+cosx+tanx+secx+"cosec"x+cotx| , is

The maximum value of cos^2(45^0+x)+(sinx-cosx)^2 is ______

The maximum value of cos^2(45^0+x)+(sinx-cosx)^2 is ______

If lambda be the minimum value of y= (sinx+"cosec"x)^(2)+(cosx+secx)^(2)+(tanx+cot x)^(2) where x in R . Find lambda-6 .

If lambda be the minimum value of y= (sinx+"cosec"x)^(2)+(cosx+secx)^(2)+(tanx+cot x)^(2) where x in R . Find lambda-6 .

Let f(x)=2 cosec 2x + sec x+cosec x , then the minimum value of f(x) for x in (0,pi/2) is

Find the absolute maximum value and the absolute minimum value of f(x)=sinx+cosx in [0,\ pi]