Home
Class 12
MATHS
If a+b+c=3 and agt0,bgt0,cgt0 then the g...

If `a+b+c=3` and `agt0,bgt0,cgt0` then the greatest value of `a^(2)b^(3)c^(2)` is

A

`(3^(4)*2^(10))/(7^(7))`

B

`(3^(10)*2^(4))/(7^(7))`

C

`(3^(2)*2^(12))/(7^(7))`

D

`(3^(12)*2^(2))/(7^(7))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the greatest value of \( a^2 b^3 c^2 \) given the constraints \( a + b + c = 3 \) and \( a, b, c > 0 \), we can use the method of Lagrange multipliers or apply the AM-GM inequality. Here, we will use the AM-GM inequality for a clearer understanding. ### Step-by-Step Solution: 1. **Understanding the Problem**: We need to maximize the expression \( a^2 b^3 c^2 \) under the constraint \( a + b + c = 3 \). 2. **Applying the AM-GM Inequality**: According to the AM-GM inequality, for any non-negative real numbers \( x_1, x_2, \ldots, x_n \): \[ \frac{x_1 + x_2 + \ldots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \ldots x_n} \] We will apply this to the terms \( a, a, b, b, b, c, c \) (which gives us 7 terms). 3. **Setting up the AM-GM Inequality**: We can express the AM-GM inequality as follows: \[ \frac{a + a + b + b + b + c + c}{7} \geq \sqrt[7]{a^2 b^3 c^2} \] Since \( a + b + c = 3 \), we have: \[ \frac{2a + 3b + 2c}{7} = \frac{3}{7} \] 4. **Substituting into the Inequality**: Thus, we can write: \[ \frac{3}{7} \geq \sqrt[7]{a^2 b^3 c^2} \] 5. **Raising Both Sides to the Power of 7**: Now, raising both sides to the power of 7 gives us: \[ \left(\frac{3}{7}\right)^7 \geq a^2 b^3 c^2 \] 6. **Calculating the Maximum Value**: Therefore, the maximum value of \( a^2 b^3 c^2 \) is: \[ a^2 b^3 c^2 \leq \frac{3^7}{7^7} \] 7. **Finding the Exact Maximum**: To find the exact maximum, we need to check when equality holds in the AM-GM inequality. This occurs when: \[ a = a = b = b = b = c = c \] Let \( a = 2x \), \( b = 3x \), \( c = 2x \). Then: \[ 2x + 3x + 2x = 3 \implies 7x = 3 \implies x = \frac{3}{7} \] Thus: \[ a = \frac{6}{7}, \quad b = \frac{9}{7}, \quad c = \frac{6}{7} \] 8. **Substituting Back to Find Maximum**: Now substituting back to find \( a^2 b^3 c^2 \): \[ a^2 b^3 c^2 = \left(\frac{6}{7}\right)^2 \left(\frac{9}{7}\right)^3 \left(\frac{6}{7}\right)^2 \] Simplifying this gives: \[ = \frac{6^4 \cdot 9^3}{7^7} \] 9. **Final Calculation**: Thus, the maximum value of \( a^2 b^3 c^2 \) is: \[ = \frac{6^4 \cdot 9^3}{7^7} \] ### Conclusion: The greatest value of \( a^2 b^3 c^2 \) is \( \frac{6^4 \cdot 9^3}{7^7} \).
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

If a+b+3c=1 and a gt 0, b gt 0, c gt 0 , then the greratest value of a^(2)b^(2)c^(2) is

If 2a+b+3c=1 and a gt 0, b gt 0, c gt 0 , then the greatest value of a^(4)b^(2)c^(2)"_____" .

(i) If a + b + c = 5 , (a, b, c gt 0) , find the greatest value of a^(3) b^(2) c^(4) . (ii) Find the greatest value of (5 - x)^(2) (x -2)^(2) , given 2 lt x lt 5 .

If a,bgt0 then the maximum value of (a^(3)b)/((a+b)^(4)), is

If a+b+c=0, then write the value of a^3+b^3+c^3

If ab=2a+3b, agt0, b gt0 , then the minimum value of ab is

If agt0, bgt0, cgt0 and the minimum value of a^2(b+c)+b^2(c+a)+c^2(a+b) is kabc, then k is (A) 1 (B) 3 (C) 6 (D) 4

If a, bgt0,a+b=1 , then the least value of (1+(1)/(a))(1+(1)/(b)) , is

When a=3,b=0, c=-2 find the value of : a^(3)+b^(3)+c^(3)-3abc

If a gt 0,bgt 0,cgt0 and 2a +b+3c=1 , then