Home
Class 12
MATHS
Consider the pattern shown below: {:("...

Consider the pattern shown below:
`{:(" Row ",1,1,,,),(" Row ",2,3,5,,),(" Row ",3,7,9,11,),(" Row ",4,13,15,17,19):}etc.`
The number at the end of row 60 is

A

3659

B

3519

C

3681

D

3731

Text Solution

AI Generated Solution

The correct Answer is:
To find the number at the end of row 60 in the given pattern, we will derive a formula for the last number in the nth row, denoted as T(n). ### Step-by-Step Solution: 1. **Identify the Last Numbers in Each Row**: - Row 1: 1 - Row 2: 5 - Row 3: 11 - Row 4: 19 2. **Find the Differences**: - The differences between consecutive last numbers: - 5 - 1 = 4 - 11 - 5 = 6 - 19 - 11 = 8 - The differences are: 4, 6, 8, which form an arithmetic progression (AP) with a common difference of 2. 3. **Express the Last Number in Terms of n**: - Let T(n) be the last number in the nth row. - We can express T(n) as: \[ T(n) = T(n-1) + (4 + 2(n-2)) \] - This means that each term is derived from the previous term plus an increasing amount. 4. **Establish a Formula**: - We can derive a formula for T(n) based on the pattern observed: - From the differences, we can see that: \[ T(n) = T(1) + \text{sum of differences up to } n-1 \] - The sum of the first (n-1) terms of the AP (4, 6, 8, ...) can be calculated as: \[ \text{Sum} = \frac{(n-1)}{2} \times (2 \times 4 + (n-2) \times 2) \] - Simplifying gives: \[ T(n) = 1 + \frac{(n-1)}{2} \times (8 + 2(n-2)) \] - This simplifies to: \[ T(n) = 1 + (n-1)(n + 1) \] - Finally, we arrive at: \[ T(n) = n^2 + n - 1 \] 5. **Calculate T(60)**: - Substitute n = 60 into the formula: \[ T(60) = 60^2 + 60 - 1 \] - Calculate: \[ T(60) = 3600 + 60 - 1 = 3659 \] ### Final Answer: The number at the end of row 60 is **3659**.

To find the number at the end of row 60 in the given pattern, we will derive a formula for the last number in the nth row, denoted as T(n). ### Step-by-Step Solution: 1. **Identify the Last Numbers in Each Row**: - Row 1: 1 - Row 2: 5 - Row 3: 11 ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|24 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

Elementary Transformation of a matrix: The following operation on a matrix are called elementary operations (transformations) 1. The interchange of any two rows (or columns) 2. The multiplication of the elements of any row (or column) by any nonzero number 3. The addition to the elements of any row (or column) the corresponding elements of any other row (or column) multiplied by any number Echelon Form of matrix : A matrix A is said to be in echelon form if (i) every row of A which has all its elements 0, occurs below row, which has a non-zero elements (ii) the first non-zero element in each non –zero row is 1. (iii) The number of zeros before the first non zero elements in a row is less than the number of such zeros in the next now. [ A row of a matrix is said to be a zero row if all its elements are zero] Note: Rank of a matrix does not change by application of any elementary operations For example [(1,1,3),(0,1,2),(0,0,0)],[(1,1,3,6),(0,1,2,2),(0,0,0,0)] are echelon forms The number of non-zero rows in the echelon form of a matrix is defined as its RANK. For example we can reduce the matrix A=[(1,2,3),(2,4,7),(3,6,10)] into echelon form using following elementary row transformation. (i) R_2 to R_2 -2R_1 and R_3 to R_3 -3R_1 [(1,2,3),(0,0,1),(0,0,1)] (ii) R_2 to R_2 -2R_1 [(1,2,3),(0,0,1),(0,0,0)] This is the echelon form of matrix A Number of nonzero rows in the echelon form =2 rArr Rank of the matrix A is 2 The echelon form of the matrix [(1,3,4,3),(3,9,12,9),(1,3,4,1)] is :

Elementary Transformation of a matrix: The following operation on a matrix are called elementary operations (transformations) 1. The interchange of any two rows (or columns) 2. The multiplication of the elements of any row (or column) by any nonzero number 3. The addition to the elements of any row (or column) the corresponding elements of any other row (or column) multiplied by any number Echelon Form of matrix : A matrix A is said to be in echelon form if (i) every row of A which has all its elements 0, occurs below row, which has a non-zero elements (ii) the first non-zero element in each non –zero row is 1. (iii) The number of zeros before the first non zero elements in a row is less than the number of such zeros in the next now. [ A row of a matrix is said to be a zero row if all its elements are zero] Note: Rank of a matrix does not change by application of any elementary operations For example [(1,1,3),(0,1,2),(0,0,0)],[(1,1,3,6),(0,1,2,2),(0,0,0,0)] are echelon forms The number of non-zero rows in the echelon form of a matrix is defined as its RANK. For example we can reduce the matrix A=[(1,2,3),(2,4,7),(3,6,10)] into echelon form using following elementary row transformation. (i) R_2 to R_2 -2R_1 and R_3 to R_3 -3R_1 [(1,2,3),(0,0,1),(0,0,1)] (ii) R_2 to R_2 -2R_1 [(1,2,3),(0,0,1),(0,0,0)] This is the echelon form of matrix A Number of nonzero rows in the echelon form =2 rArr Rank of the matrix A is 2 Rank of the matrix [(1,1,1,-1),(1,2,4,4),(3,4,5,2)] is :

Elementary Transformation of a matrix: The following operation on a matrix are called elementary operations (transformations) 1. The interchange of any two rows (or columns) 2. The multiplication of the elements of any row (or column) by any nonzero number 3. The addition to the elements of any row (or column) the corresponding elements of any other row (or column) multiplied by any number Echelon Form of matrix : A matrix A is said to be in echelon form if (i) every row of A which has all its elements 0, occurs below row, which has a non-zero elements (ii) the first non-zero element in each non –zero row is 1. (iii) The number of zeros before the first non zero elements in a row is less than the number of such zeros in the next now. [ A row of a matrix is said to be a zero row if all its elements are zero] Note: Rank of a matrix does not change by application of any elementary operations For example [(1,1,3),(0,1,2),(0,0,0)],[(1,1,3,6),(0,1,2,2),(0,0,0,0)] are echelon forms The number of non-zero rows in the echelon form of a matrix is defined as its RANK. For example we can reduce the matrix A=[(1,2,3),(2,4,7),(3,6,10)] into echelon form using following elementary row transformation. (i) R_2 to R_2 -2R_1 and R_3 to R_3 -3R_1 [(1,2,3),(0,0,1),(0,0,1)] (ii) R_2 to R_2 -2R_1 [(1,2,3),(0,0,1),(0,0,0)] This is the echelon form of matrix A Number of nonzero rows in the echelon form =2 rArr Rank of the matrix A is 2 Rank of the matrix [(1,1,1),(1,-1,-1),(3,1,1)] is :

The set of natural numbers is divided into array of rows and columns in the form of matrices as A_(1)=[1], A_(2)=[(2,3),(4,5)], A_(3)=[(6,7,8),(9,10,11),(12,13,14)] and so on. Let the trace of A_(10) be lambda . Find unit digit of lambda ?

The first row, second column of the product [(x,1),(2,-3)][(5,-x),(2,1)] is

Evaluate D =|[2, 3,-2],[ 1, 2, 3],[-2, 1,-3]| by expanding it along the second row.

Find the inverse using elementary row transformations: [(1, 3, -2),(-3 ,0 ,1), (2, 1, 0)]

The inter - quartile range of the data 1, 3, 5, 7, 9, 11, 13, 15, 17, 19

The number of bones present in the 1st, 2nd, and 3rd rows of trasals is

In the matrix [[1,0,5],[2,-3,4]] i. number of rows is……………………...

ARIHANT MATHS ENGLISH-SEQUENCES AND SERIES-Exercise (Single Option Correct Type Questions)
  1. The sum to infinity of the series 1+2(1-(1)/(n))+3(1-(1)/(n))^(2)+ ....

    Text Solution

    |

  2. If log(3)2,log(3)(2^(x)-5) and log(3)(2^(x)-7/2) are in A.P., then x i...

    Text Solution

    |

  3. If x,y,z be three positive prime numbers. The progression in which sqr...

    Text Solution

    |

  4. If n is an odd integer greater than or equal to 1, then the value of n...

    Text Solution

    |

  5. If the sides of a right angled triangle are in A.P then the sines of t...

    Text Solution

    |

  6. The 6th term of an AP is equal to 2, the value of the common differenc...

    Text Solution

    |

  7. If the arithmetic progression whose common difference is nonzero the ...

    Text Solution

    |

  8. The coefficient of x^(n) in the expansion of (1+x)(1-x)^(n) is

    Text Solution

    |

  9. Consider the pattern shown below: {:(" Row ",1,1,,,),(" Row ",2,3,5,...

    Text Solution

    |

  10. Let a(n) be the nth term of an AP, if sum(r=1)^(100)a(2r)= alpha " and...

    Text Solution

    |

  11. If a(1),a(2),a(3),a(4),a(5) are in HP, then a(1)a(2)+a(2)a(3)+a(3)a(4)...

    Text Solution

    |

  12. If a,b,c and d are four positive real numbers such that abcd=1 , what ...

    Text Solution

    |

  13. If a,b,c are in AP and (a+2b-c)(2b+c-a)(c+a-b)=lambdaabc, then lambda...

    Text Solution

    |

  14. If a(1),a(2),a(3)"....." are in GP with first term a and common ratio ...

    Text Solution

    |

  15. If the sum of first 10 terms of an A.P. is 4 times the sum of its firs...

    Text Solution

    |

  16. If cos(x-y),cosx and "cos"(x+y) are in H.P., then cosxsec(y/2) is

    Text Solution

    |

  17. If eleven A.M. s are inserted between 28 and 10, then find the number ...

    Text Solution

    |

  18. If x >1,y >1,a n dz >1 are in G.P., then 1/(1+lnx),1/(1+l ny)a n d1/(1...

    Text Solution

    |

  19. The minimum value of ((a^2 +3a+1)(b^2+3b + 1)(c^2+ 3c+ 1))/(abc)The mi...

    Text Solution

    |

  20. Leta(1),a(2),"...." be in AP and q(1),q(2),"...." be in GP. If a(1)=q(...

    Text Solution

    |