Home
Class 12
MATHS
Let (a(1),b(1)) and (a(2),b(2)) are the...

Let `(a_(1),b_(1))` and `(a_(2),b_(2))` are the pair of real numbers such that 10,a,b,ab constitute an arithmetic progression. Then, the value of `((2a_(1)a_(2)+b_(1)b_(2))/(10))` is

Text Solution

AI Generated Solution

To solve the problem, we need to find the value of \(\frac{2a_1a_2 + b_1b_2}{10}\) given that \(10, a, b, ab\) are in an arithmetic progression (AP). Let's break it down step by step. ### Step 1: Understanding the Arithmetic Progression Since \(10, a, b, ab\) are in AP, we can use the property of AP that states the second term minus the first term is equal to the third term minus the second term, and so on. This gives us the following relationships: - \(a - 10 = b - a\) - \(b - a = ab - b\) ### Step 2: Setting Up the Equations ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Matching Type Questions|1 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|24 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

If 2, h_(1), h_(2),………,h_(20)6 are in harmonic progression and 2, a_(1),a_(2),……..,a_(20), 6 are in arithmetic progression, then the value of a_(3)h_(18) is equal to

Let A = {a_(1), b_(1), c_(1)} and B = {a_(2), b_(2)} (i) A xx B (ii) B xx B

If a_(1), a_(2), a_(3), a_(4), a_(5) are consecutive terms of an arithmetic progression with common difference 3, then the value of |(a_(3)^(2),a_(2),a_(1)),(a_(4)^(2),a_(3),a_(2)),(a_(5)^(2),a_(4),a_(3))| is

Let a_(1),a_(2)…,a_(n) be a non-negative real numbers such that a_(1)+a_(2)+…+a_(n)=m and let S=sum_(iltj) a_(i)a_(j) , then

If two equation a_(1) x^(2) + b_(1) x + c_(1) = 0 and, a_(2) x^(2) + b_(2) x + c_(2) = 0 have a common root, then the value of (a_(1) b_(2) - a_(2) b_(1)) (b_(1) c_(2) - b_(2) c_(1)) , is

If a_(1)+a_(5)+a_(10)+a_(15)+a_(20)=225 , then the sum of the first 24 terms of the arithmetic progression a_(1), a_(2), a_(3)…….. is equal to

If the quadratic polynomials defined on real coefficient P(x)=a_(1)x^(2)+2b_(1)x+c_(1) and Q(x)=a_(2)x^(2)+2b_(2)x+c_(2) take positive values AA x in R , what can we say for the trinomial g(x)=a_(1)a_(2)x^(2)+b_(1)b_(2)x+c_(1)c_(2) ?

Let a_(1), a_(2),…. and b_(1),b_(2),…. be arithemetic progression such that a_(1)=25 , b_(1)=75 and a_(100)+b_(100)=100 , then the sum of first hundred term of the progression a_(1)+b_(1) , a_(2)+b_(2) ,…. is equal to

If A_(1), A_(2), A_(3),....A_(51) are arithmetic means inserted between the number a and b, then find the value of ((b + A_(51))/(b - A_(51))) - ((A_(1) + a)/(A_(1) - a))

If the tangents and normal to an ellipse 9x^(2) + 16y^(2) = 144 at a point intercept a_(1), a_(2) on x-axis and b_(1), b_(2) on y-axis. Then the value of a_(1)a_(2) + b_(1)b_(2) + 1000 is _________ .