Home
Class 12
MATHS
Find the value of the following log(cot3...

Find the value of the following `log_(cot30^@)tan45^@`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{\cot 30^\circ} \tan 45^\circ \), we can follow these steps: ### Step 1: Identify the values of \( \tan 45^\circ \) and \( \cot 30^\circ \) - We know that: \[ \tan 45^\circ = 1 \] and \[ \cot 30^\circ = \frac{1}{\tan 30^\circ} = \frac{1}{\frac{1}{\sqrt{3}}} = \sqrt{3} \] ### Step 2: Rewrite the logarithm using the change of base formula Using the change of base formula for logarithms, we can express \( \log_{\cot 30^\circ} \tan 45^\circ \) as: \[ \log_{\cot 30^\circ} \tan 45^\circ = \frac{\log \tan 45^\circ}{\log \cot 30^\circ} \] ### Step 3: Substitute the known values into the logarithm Now substituting the known values: \[ \log_{\cot 30^\circ} \tan 45^\circ = \frac{\log 1}{\log \sqrt{3}} \] ### Step 4: Evaluate \( \log 1 \) We know that: \[ \log 1 = 0 \] ### Step 5: Substitute back into the expression Now substituting back, we have: \[ \log_{\cot 30^\circ} \tan 45^\circ = \frac{0}{\log \sqrt{3}} \] ### Step 6: Simplify the expression Since the numerator is 0, the entire expression simplifies to: \[ \log_{\cot 30^\circ} \tan 45^\circ = 0 \] ### Final Answer Thus, the value of \( \log_{\cot 30^\circ} \tan 45^\circ \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of the following log_(30)1

Find the value of the following log_((sec^2 60^@-tan^2 60^@))cos60^@

Find the value of the following log_((sin^(2)30^(@)+cos^2 30^(@)))1

Find the values of the following: a) 30((log_(43) (43))/30) b) (1/2)^(log_(2)5)

Find the values of the following :- {:((a)sin(-30^(@)),(b)cos(-45^(@))),((c)sin(-60^(@)),(d)tan(-45^(@))):}

Find the value of: tan(-30^(@))

Find the value of x in each of the following: tanx=sin45°cos45°+sin30° (ii) sqrt(3)tan2x=cos60°+sin45°cos45° (iii) cos2x=cos60°cos30°+sin60°sin30°

using trigonometric tables evaluate the following : (cot 30^(@))/(sec 30^(@)) + ("cosec 30"^(@))/(tan 45^(@)) - (2 cos 0^(@))/(sin 30^(@)) + cos^(2) 45^(@)

ABC is an isosceles right-angled triangle. Assuming AB = BC = x, find the value of each of the following trigonometric ratios : (i) sin45^(@) (ii) cos45^(@) (iii) tan45^(@)

Find the value of the expression sin[cot^(-1){cos(tan^11)}]