Home
Class 12
MATHS
Statement-1: For every natural number ng...

Statement-1: For every natural number `nge2`,
`(1)/(sqrt(1))+(1)/(sqrt(2))+(1)/(sqrt(3))+...+(1)/(sqrt(n))gtsqrt(n)`
Statement-2: For every natural number `nge2,`
`sqrt(n(n+1))ltn+1`

A

Statement-1 is true , Statement-2 is true, Statement-2 is correct explanation for Statement-1

B

Statement-1 is true , Statement-2 is true , Statement-2 is not a correct explanation for Statement-1

C

Statement-1 is true , Statement-2 is false

D

Statement-1 is false , Statement -2 is true .

Text Solution

AI Generated Solution

To solve the problem, we will use the principle of mathematical induction to prove Statement-1 and then analyze Statement-2. ### Step-by-Step Solution **Step 1: Base Case (n = 2)** We need to check if the statement holds for the base case, n = 2. The left-hand side (LHS) is: \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|20 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos

Similar Questions

Explore conceptually related problems

Statement-1: For every natural number n ge 2, (1)/(sqrt1)+(1)/(sqrt2)+…..(1)/(sqrtn) gt sqrtn Statement-2: For every natural number n ge 2, sqrt(n(n+1) lt n+1

underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)/(n)]

Prove that : (1)/(sqrt(2)+1)+ (1)/(sqrt(3)+sqrt(2))+ (1)/(2+sqrt(3))=1

For all n in N, 1 + 1/(sqrt(2))+1/(sqrt(3))+1/(sqrt(4))++1/(sqrt(n))

Prove that 1+(1)/(sqrt2)+(1)/(sqrt3)+....+(1)/(sqrtn) ge sqrtn, AA n in N

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

The value of lim_(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(n)) is

If n is a natural number, then sqrt(n) is:

The value of : lim_(ntooo)((1)/(sqrtn sqrt(n+1))+(1)/(sqrtn sqrt(n+2))+ (1)/(sqrtn sqrt(n +3)) + ...... +(1)/(sqrtn sqrt(2n))) is:

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals