Home
Class 12
MATHS
If log2=0.301 and log3=0.477, find the n...

If log2=0.301 and log3=0.477, find the number of integers in
(ii) `6^(20)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of integers in \( 6^{20} \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Given Values:** We are given: \[ \log 2 = 0.301 \quad \text{and} \quad \log 3 = 0.477 \] 2. **Express \( 6^{20} \) in terms of logarithms:** We can express \( 6^{20} \) using logarithms. Let: \[ y = 6^{20} \] Taking logarithm on both sides: \[ \log y = \log (6^{20}) = 20 \log 6 \] 3. **Break down \( \log 6 \):** We can express \( 6 \) as \( 2 \times 3 \): \[ \log 6 = \log (2 \times 3) = \log 2 + \log 3 \] Substituting the values we have: \[ \log 6 = \log 2 + \log 3 = 0.301 + 0.477 \] 4. **Calculate \( \log 6 \):** Now, calculate: \[ \log 6 = 0.301 + 0.477 = 0.778 \] 5. **Substitute back into the equation for \( \log y \):** Now substitute \( \log 6 \) back into the equation for \( \log y \): \[ \log y = 20 \log 6 = 20 \times 0.778 \] 6. **Calculate \( \log y \):** Now calculate: \[ \log y = 20 \times 0.778 = 15.56 \] 7. **Convert back to the number \( y \):** To find \( y \), we can express it in exponential form: \[ y = 10^{15.56} \] 8. **Determine the number of integers:** The number of integers in \( y \) can be determined by the integer part of the exponent: - The integer part of \( 15.56 \) is \( 15 \). - The next integer greater than \( 15.56 \) is \( 16 \). Thus, the number of integers in \( 6^{20} \) is \( 16 \). ### Final Answer: The number of integers in \( 6^{20} \) is \( 16 \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If log2=0.301 and log3=0.477, find the number of integers in 6^(20)

If log2=0.301 and log3=0.477, find the number of integers in 5^(200)

If log2=0.301 and log3=0.477, find the number of integers in the number of zeroes after the decimal is 3^(-500) .

If log2=0.301 and log3=0.477 , find the number of digits in: (3^15xx2^10)

If log2=0.3010andlog3=0.4771 , find the value of log 6

If log2=0.3010andlog3=0.4771 , find the value of log 5

If log2=0.301 and log3=0.477, find the value of log(3.375).

If log2=0.3010andlog3=0.4771 , find the value of logsqrt(24)

If log2=0. 30101 ,\ log3=0. 47712 , then the number of digits in 6^(20) is 15 b. 16 c. 17 d. 18

Given ,log2=0.301 and log3=0.477, then the number of digits before decimal in 3^12times2^8 is