Home
Class 12
MATHS
Solve for a,lamda if loglamda acdotlog...

Solve for a,`lamda` if `log_lamda acdotlog_(5)lamdacdotlog_(lamda)25=2`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{\lambda} a \cdot \log_{5} \lambda \cdot \log_{\lambda} 25 = 2 \), we can follow these steps: ### Step 1: Write the equation We start with the given equation: \[ \log_{\lambda} a \cdot \log_{5} \lambda \cdot \log_{\lambda} 25 = 2 \] ### Step 2: Use the change of base formula Using the change of base formula, we can express the logarithms in terms of natural logarithms (or any common base): \[ \log_{\lambda} a = \frac{\log a}{\log \lambda}, \quad \log_{5} \lambda = \frac{\log \lambda}{\log 5}, \quad \log_{\lambda} 25 = \frac{\log 25}{\log \lambda} \] Substituting these into the equation gives: \[ \frac{\log a}{\log \lambda} \cdot \frac{\log \lambda}{\log 5} \cdot \frac{\log 25}{\log \lambda} = 2 \] ### Step 3: Simplify the equation Notice that \( \log \lambda \) cancels out: \[ \frac{\log a \cdot \log 25}{\log 5 \cdot \log \lambda} = 2 \] Now, we can express \( \log 25 \) as \( \log 5^2 = 2 \log 5 \): \[ \frac{\log a \cdot 2 \log 5}{\log 5 \cdot \log \lambda} = 2 \] ### Step 4: Cancel \( \log 5 \) The \( \log 5 \) terms cancel out: \[ \frac{2 \log a}{\log \lambda} = 2 \] ### Step 5: Simplify further Dividing both sides by 2 gives: \[ \frac{\log a}{\log \lambda} = 1 \] ### Step 6: Cross-multiply Cross-multiplying yields: \[ \log a = \log \lambda \] ### Step 7: Take antilogarithm Taking the antilogarithm of both sides results in: \[ a = \lambda \] ### Final Answer Thus, the solution is: \[ a = \lambda \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Find values of lamda for which 1/log_3lamda+1/log_4lamdagt2 .

Given that log_2a=lamda,log_4b=lamda^2 and log_(c^2)(8)=2/(lamda^3+1) write log_2((a^2b^5)/5) as a function of lamda,(a,b,cgt0,cne1) .

If log_lamdax.log_5lamda=log_x5,lamda ne1,lamdagt0 , then x is equal to

It is known that x=9 is root of the equation. log_lamda(x^2+15a^2)-log_lamda(a-2)=log_lamda "(8ax)/(a-2) find the other roots of this equation.

The sum of all intergral values of lamda for which (lamda^(2) + lamda -2) x ^(2) + (lamda +2) x lt 1 AA x in R, is:

If veca,vecb,vecc are three non coplanar vectors such that vecr_1=veca-vecb+vecc,vecr_2=vecb+vecc-veca, vecr_3=vecc+veca+vecb,vecr=2veca-3vecb+3vecc if vecr=lamda_1 vecr_1+lamda_2vecr_2+lamda_3vecr_3 then (A) lamda_1=7/2 (B) lamda_1+lamda_2=3 (C) lamda_2+lamda_3=2 (D) lamda_1+lamda_2+lamda_3=4

The matrix A={:[(lamda_(1)^(2),lamda_(1)lamda_(2),lamda_(1)lamda_(3)),(lamda_(2)lamda_(1),lamda_(2)^(2),lamda_(2)lamda_(3)),(lamda_(3)lamda_(1),lamda_(3)lamda_(2),lamda_(3)^(2))]:} is idempotent if lamda_(1)^(2)+lamda_(2)^(2)+lamda_(3)^(2)=k where lamda_(1),lamda_(2),lamda_(3) are non-zero real numbers. Then the value of (10+k)^(2) is . . .

IF lamda^(log_(5)3 =81 ,find the value of lamda .

Let f(x,y)=0 be the equation of a circle. If f(0,lamda)=0 has equal roots lamda=2,2 and f(lamda,0)=0 has roots lamda=(4)/(5),5 then the centre of the circle is

The value of the lambda so that P, Q, R, S on the sides OA, OB, OC and AB of a regular tetrahedron are coplanar. When (OP)/(OA)=1/3 ;(OQ)/(OB)=1/2 and (OS)/(AB)=lambda is (A) lamda=1/2 (B) lamda=-1 (C) lamda=0 (D) lamda=2