Home
Class 12
MATHS
If x=log(2a)((bcd)/2), y=log(3b)((acd)/3...

If `x=log_(2a)((bcd)/2), y=log_(3b)((acd)/3), z=log_(4c)((abd)/4) and w=log_(5d)((abc)/5)` and `1/(x+1)+1/(y+1)+1/(z+1)+1/(w+1) = log_(abcd)N+1,` then value of `N/40` is

A

40

B

80

C

120

D

160

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we start with the definitions of \( x, y, z, \) and \( w \): 1. **Given Definitions**: \[ x = \log_{2a}\left(\frac{bcd}{2}\right), \quad y = \log_{3b}\left(\frac{acd}{3}\right), \quad z = \log_{4c}\left(\frac{abd}{4}\right), \quad w = \log_{5d}\left(\frac{abc}{5}\right) \] 2. **Rewriting the Expression**: We need to evaluate: \[ \frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1} + \frac{1}{w+1} = \log_{abcd} N + 1 \] 3. **Substituting Values**: We can rewrite \( x, y, z, \) and \( w \) using the logarithmic identity \( \log_a b + 1 = \log_a (ab) \): \[ \frac{1}{x+1} = \frac{1}{\log_{2a}\left(\frac{bcd}{2}\right) + 1} = \frac{1}{\log_{2a}\left(\frac{bcd}{2}\right) + \log_{2a}(2a)} = \frac{1}{\log_{2a}\left(bcd\right)} = \log_{\frac{bcd}{2}}(2a) \] Similarly, we can write: \[ \frac{1}{y+1} = \log_{\frac{acd}{3}}(3b), \quad \frac{1}{z+1} = \log_{\frac{abd}{4}}(4c), \quad \frac{1}{w+1} = \log_{\frac{abc}{5}}(5d) \] 4. **Combining the Terms**: Now we combine these logarithmic expressions: \[ \log_{\frac{bcd}{2}}(2a) + \log_{\frac{acd}{3}}(3b) + \log_{\frac{abd}{4}}(4c) + \log_{\frac{abc}{5}}(5d) \] 5. **Using Logarithmic Properties**: Using the property \( \log_a b + \log_a c = \log_a(bc) \): \[ = \log_{abcd}\left(2a \cdot 3b \cdot 4c \cdot 5d\right) \] 6. **Calculating the Product**: The product simplifies to: \[ 2 \cdot 3 \cdot 4 \cdot 5 \cdot abcd = 120 \cdot abcd \] 7. **Final Expression**: Thus, we have: \[ \log_{abcd}(120 \cdot abcd) = \log_{abcd}(120) + 1 \] 8. **Comparing with the Given Equation**: Now we can compare: \[ \log_{abcd}(N) + 1 = \log_{abcd}(120) + 1 \] This implies: \[ N = 120 \] 9. **Finding \( \frac{N}{40} \)**: Finally, we calculate: \[ \frac{N}{40} = \frac{120}{40} = 3 \] Thus, the value of \( \frac{N}{40} \) is \( \boxed{3} \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

if x =log_a (bc), y= log_b (ca) and z=log_c(ab) then 1/(x+1)+1/(y+1)+1/(z+1)

If x=log_(2a) a,y=log_(3a) 2a and z=log_(4a) 3a then prove that xyz+1=2yz

If log_(4)10=x,log_(2)20=y andlog_(5)8=z .prove that 1/(x+1)+1/(y+1)+1/(z+1)=1.

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

Let a= log_(3) 20, b = log_(4) 15 and c = log_(5) 12 . Then find the value of 1/(a+1)+1/(b+1)+1/(c+1) .

If log_(a)5=x and log_(a)7=y , then log_(a)sqrt(1,4)=

Solve log_((1)/(3))(x-1)>log_((1)/(3))4 .

If x = "log"_(2) 3 " and " y = "log"_(1//2) 5 , then

If log_(16)(log_(root(4)(3))(log_(root(3)(5))(x)))=(1)/(2) , find x.