Home
Class 12
MATHS
The value of (log5 9*log7 5*log3 7)/(log...

The value of `(log_5 9*log_7 5*log_3 7)/(log_3 sqrt(6))+1/(log_4 sqrt(6))` is co-prime with

A

1

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \((\log_5 9 \cdot \log_7 5 \cdot \log_3 7) / \log_3 \sqrt{6} + 1 / \log_4 \sqrt{6}\), we will simplify it step by step. ### Step 1: Rewrite the logarithms using properties We can use the change of base formula and the power property of logarithms. Recall that \(\log_b a = \frac{\log_k a}{\log_k b}\) for any base \(k\), and \(\log_b (a^n) = n \log_b a\). \[ \log_5 9 = \frac{\log 9}{\log 5}, \quad \log_7 5 = \frac{\log 5}{\log 7}, \quad \log_3 7 = \frac{\log 7}{\log 3} \] Substituting these into the expression gives: \[ \frac{\left(\frac{\log 9}{\log 5}\right) \cdot \left(\frac{\log 5}{\log 7}\right) \cdot \left(\frac{\log 7}{\log 3}\right)}{\log_3 \sqrt{6}} + \frac{1}{\log_4 \sqrt{6}} \] ### Step 2: Simplify the product in the numerator Notice that the \(\log 5\) and \(\log 7\) terms cancel out: \[ = \frac{\log 9}{\log 3} \cdot \frac{1}{\log_3 \sqrt{6}} + \frac{1}{\log_4 \sqrt{6}} \] ### Step 3: Simplify \(\log_3 \sqrt{6}\) and \(\log_4 \sqrt{6}\) Using the power property of logarithms: \[ \log_3 \sqrt{6} = \log_3 (6^{1/2}) = \frac{1}{2} \log_3 6 \] \[ \log_4 \sqrt{6} = \log_4 (6^{1/2}) = \frac{1}{2} \log_4 6 \] Substituting these back into the expression gives: \[ = \frac{\log 9}{\log 3} \cdot \frac{2}{\log 6} + \frac{2}{\log 6} \] ### Step 4: Combine the terms Factoring out \(\frac{2}{\log 6}\): \[ = \frac{2}{\log 6} \left(\frac{\log 9}{\log 3} + 1\right) \] ### Step 5: Simplify \(\frac{\log 9}{\log 3}\) We know that \(\log 9 = \log(3^2) = 2 \log 3\): \[ \frac{\log 9}{\log 3} = 2 \] Thus, substituting this back gives: \[ = \frac{2}{\log 6} (2 + 1) = \frac{2 \cdot 3}{\log 6} = \frac{6}{\log 6} \] ### Step 6: Evaluate \(\frac{6}{\log 6}\) Now we need to find if \(6\) is co-prime with any of the given options. The only common factor of \(6\) is \(1\), so we check the options. ### Conclusion The value \(6\) is co-prime with \(1\), \(3\), and \(5\). Therefore, the answer is: **Coprime with:** \(1, 3, 5\)
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

a=log_5 3+log_7 5+log_9 7

log_4log_5 25+log_3log_3 3

The value of 5^(sqrtlog_5 7)-7^sqrt(log_7 5) is

The value of 2^("log"_(3)7) - 7^("log"_(3)2) is

The value of log_(8)17/(log_(9)23)-log_(2sqrt2)17/(log_(3)23) is equal to

The value of ("log" 49 sqrt(7) + "log" 25sqrt(5) - "log" 4sqrt(2))/("log" 17.5) , is

Prove that: (log_9 11)/(log_5 3) = (log_3 11)/(log_sqrt(5) 3).

int_(1)^(7)(log sqrt(x))/(log sqrt(8-x)+log sqrt(x))dx=

Find the value of ((log)_3 4)((log)_4 5)((log)_5 6)((log)_6 7)((log)_7 8)((log)_8 9)dot

Find the value of ((log)_3 4)((log)_4 5)((log)_5 6)((log)_6 7)((log)_7 8)((log)_8 9)dot