Home
Class 12
MATHS
If (31.6)^a=(0.0000316)^b=100 , the valu...

If `(31.6)^a=(0.0000316)^b=100` , the value of `1/a-1/b`is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( (31.6)^a = (0.0000316)^b = 100 \), we need to find the value of \( \frac{1}{a} - \frac{1}{b} \). Let's break it down step by step. ### Step 1: Set up the equations We have two equations based on the given information: 1. \( (31.6)^a = 100 \) 2. \( (0.0000316)^b = 100 \) ### Step 2: Take logarithms Taking logarithm base 10 of both sides for the first equation: \[ \log_{10}((31.6)^a) = \log_{10}(100) \] Using the property of logarithms, we can rewrite this as: \[ a \cdot \log_{10}(31.6) = \log_{10}(10^2) \] This simplifies to: \[ a \cdot \log_{10}(31.6) = 2 \] Thus, we can express \( a \) as: \[ a = \frac{2}{\log_{10}(31.6)} \] ### Step 3: Repeat for the second equation Now, for the second equation, we take logarithm base 10: \[ \log_{10}((0.0000316)^b) = \log_{10}(100) \] This can be rewritten as: \[ b \cdot \log_{10}(0.0000316) = 2 \] Next, we simplify \( \log_{10}(0.0000316) \): \[ 0.0000316 = \frac{31.6}{10^5} \implies \log_{10}(0.0000316) = \log_{10}(31.6) - 5 \] Substituting this back gives: \[ b \cdot (\log_{10}(31.6) - 5) = 2 \] Thus, we can express \( b \) as: \[ b = \frac{2}{\log_{10}(31.6) - 5} \] ### Step 4: Find \( \frac{1}{a} - \frac{1}{b} \) Now we need to calculate \( \frac{1}{a} - \frac{1}{b} \): \[ \frac{1}{a} = \frac{\log_{10}(31.6)}{2} \] \[ \frac{1}{b} = \frac{\log_{10}(31.6) - 5}{2} \] Now, substituting these into the expression: \[ \frac{1}{a} - \frac{1}{b} = \frac{\log_{10}(31.6)}{2} - \frac{\log_{10}(31.6) - 5}{2} \] This simplifies to: \[ \frac{1}{a} - \frac{1}{b} = \frac{\log_{10}(31.6) - (\log_{10}(31.6) - 5)}{2} = \frac{5}{2} \] ### Final Result Thus, the value of \( \frac{1}{a} - \frac{1}{b} \) is: \[ \frac{5}{2} = 2.5 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If (21. 4)^a=(0. 00214)^b=100 , then the value of 1/a-1/b is 0 (b) 1 (c) 2 (d) 4

If (21. 4)^a=(0. 00214)^b=100 , then the value of 1/a-1/b is 0 (b) 1 (c) 2 (d) 4

If (21.4)^(a) = (0.00214)^(b) = 100 , then the value of (1)/(a)-(1)/(b) is

In triangleABC , Delta=6 , abc=60 , r=1 Then the value of 1/a+a/b+a/c is nearly (a) 0.5 (b) 0.6 (c) 0.4 (d) 0.8

If (a/3-1,\ b-2/3)=(5/3,1/3) , find the values of a\ a n d\ bdot

Let a_(1), a_(2),…. and b_(1),b_(2),…. be arithemetic progression such that a_(1)=25 , b_(1)=75 and a_(100)+b_(100)=100 , then the sum of first hundred term of the progression a_(1)+b_(1) , a_(2)+b_(2) ,…. is equal to

if a,b,c are complex numbers such that a+b+c=0 and |a|=|b|=|c|=1 find the value of 1/a+1/b+1/c

Let a,binRandabne1."If "6a^(2)+20a+15=0and15b^(2)+20b+6=0 then the value of (4030b^(3))/(ab^(2)-9(ab+1)^(3)) is _____.

Given a skew symmetric matrix A = [ (0, a , 1),(-1, b, 1),(-1, c, 0)] , the value of (a + b + c)^2 is

If the lines x+ay+a=0, bx+y+b=0, cx+cy+1=0 (a!=b!=c!=1) are concurrent then value of a/(a-1)+b/(b-1)+c/(c-1)=