Home
Class 12
MATHS
Find the value of the expressions (log...

Find the value of the expressions `(log2)^3+log8.log(5)+(log5)^3` .

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( (\log 2)^3 + \log 8 \cdot \log 5 + (\log 5)^3 \), we can follow these steps: ### Step 1: Rewrite \(\log 8\) We know that \( 8 = 2^3 \). Therefore, we can rewrite \(\log 8\) using the power rule of logarithms: \[ \log 8 = \log(2^3) = 3 \log 2 \] ### Step 2: Substitute \(\log 8\) into the expression Now, substitute \(\log 8\) back into the original expression: \[ (\log 2)^3 + \log 8 \cdot \log 5 + (\log 5)^3 = (\log 2)^3 + (3 \log 2) \cdot \log 5 + (\log 5)^3 \] ### Step 3: Recognize the form of the expression The expression now resembles the expansion of \( (a + b)^3 \), where \( a = \log 2 \) and \( b = \log 5 \). The expansion of \( (a + b)^3 \) is given by: \[ a^3 + b^3 + 3ab(a + b) \] Thus, we can write: \[ (\log 2)^3 + (\log 5)^3 + 3 \log 2 \cdot \log 5 \cdot (\log 2 + \log 5) \] ### Step 4: Simplify using logarithmic properties Using the property of logarithms that states \( \log a + \log b = \log(ab) \), we can simplify \( \log 2 + \log 5 \): \[ \log 2 + \log 5 = \log(2 \cdot 5) = \log 10 \] Since \( \log 10 = 1 \), we can substitute this back into our expression: \[ (\log 2)^3 + (\log 5)^3 + 3 \log 2 \cdot \log 5 \cdot 1 \] ### Step 5: Final expression Now, we have: \[ (\log 2)^3 + (\log 5)^3 + 3 \log 2 \cdot \log 5 \] This is equal to: \[ (\log 2 + \log 5)^3 = (\log 10)^3 = 1^3 = 1 \] ### Conclusion Thus, the value of the expression \( (\log 2)^3 + \log 8 \cdot \log 5 + (\log 5)^3 \) is: \[ \boxed{1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of 2log2/5 +3 log25/8 -log 625/128

If log 2 = 0.3010 and log 3 = 0.4771, find the value of : (i) log 12 (ii) log 1.2 (iii) log 3.6 (iv) log 15 (v) log 25 (vi) (2)/(3) log 8

Knowledge Check

  • What is the real value of x in the eqaution, log_2 80- log_2 5 = log_3 x ?

    A
    8
    B
    48
    C
    75
    D
    81
  • Similar Questions

    Explore conceptually related problems

    Find the value of the following: (i) log_(10) 2 + log_(10) 5 (ii) log_(3) (sqrt(11)-sqrt2) + log_(3) (sqrt11+sqrt2) (iii) log_(7) 35 - log_(7) 5

    The value of (log_(10)2)^3+log_(10)8log_(10)5+(log_(10)5)^3 is ............

    The value of (log_(10)2)^(3)+log_(10)8 * log_(10) 5 + (log_(10)5)^(3) is _______.

    Find the value of ((log)_3 4)((log)_4 5)((log)_5 6)((log)_6 7)((log)_7 8)((log)_8 9)dot

    Find the value of ((log)_3 4)((log)_4 5)((log)_5 6)((log)_6 7)((log)_7 8)((log)_8 9)dot

    Find the value of ((log)_3 4)((log)_4 5)((log)_5 6)((log)_6 7)((log)_7 8)((log)_8 9)dot

    Find the value of log_(5) log_(2)log_(3) log_(2) 512 .