Home
Class 12
MATHS
Let agt0,cgt0,b=sqrtac,a,c and acne1,Ngt...

Let `agt0,cgt0,b=sqrtac,a,c` and `acne1,Ngt0`.
Prove that `log_aN/log_cN=(log_aN-log_bN)/(log_bN-log_cN)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the equation \[ \frac{\log_a N}{\log_c N} = \frac{\log_a N - \log_b N}{\log_b N - \log_c N} \] given that \( b = \sqrt{ac} \), \( a > 0 \), \( c > 0 \), \( ac \neq 1 \), and \( N > 0 \), we will use the change of base formula for logarithms. ### Step-by-step Solution: 1. **Change of Base**: We will apply the change of base formula for logarithms. The change of base formula states that: \[ \log_x y = \frac{\log_k y}{\log_k x} \] for any positive \( k \). We will use base \( N \) for our calculations. Thus, we can express the logarithms as: \[ \log_a N = \frac{\log N}{\log a}, \quad \log_c N = \frac{\log N}{\log c}, \quad \log_b N = \frac{\log N}{\log b} \] 2. **Substituting into the Left-Hand Side (LHS)**: \[ \frac{\log_a N}{\log_c N} = \frac{\frac{\log N}{\log a}}{\frac{\log N}{\log c}} = \frac{\log c}{\log a} \] 3. **Substituting into the Right-Hand Side (RHS)**: \[ \text{RHS} = \frac{\log_a N - \log_b N}{\log_b N - \log_c N} \] Substituting the expressions from step 1: \[ = \frac{\frac{\log N}{\log a} - \frac{\log N}{\log b}}{\frac{\log N}{\log b} - \frac{\log N}{\log c}} \] 4. **Simplifying the Numerator**: \[ \text{Numerator} = \frac{\log N}{\log a} - \frac{\log N}{\log b} = \log N \left( \frac{1}{\log a} - \frac{1}{\log b} \right) = \log N \cdot \frac{\log b - \log a}{\log a \cdot \log b} \] 5. **Simplifying the Denominator**: \[ \text{Denominator} = \frac{\log N}{\log b} - \frac{\log N}{\log c} = \log N \left( \frac{1}{\log b} - \frac{1}{\log c} \right) = \log N \cdot \frac{\log c - \log b}{\log b \cdot \log c} \] 6. **Putting it Together**: Now substituting back into the RHS: \[ \text{RHS} = \frac{\log N \cdot \frac{\log b - \log a}{\log a \cdot \log b}}{\log N \cdot \frac{\log c - \log b}{\log b \cdot \log c}} = \frac{\frac{\log b - \log a}{\log a}}{\frac{\log c - \log b}{\log c}} = \frac{\log b - \log a}{\log c - \log b} \] 7. **Using the Property of \( b \)**: Since \( b = \sqrt{ac} \), we know: \[ \log b = \frac{1}{2}(\log a + \log c) \] This means: \[ \log b - \log a = \frac{1}{2}(\log a + \log c) - \log a = \frac{1}{2}(\log c - \log a) \] and \[ \log c - \log b = \log c - \frac{1}{2}(\log a + \log c) = \frac{1}{2}(\log c - \log a) \] 8. **Final Simplification**: Thus, we can rewrite the RHS: \[ \text{RHS} = \frac{\frac{1}{2}(\log c - \log a)}{\frac{1}{2}(\log c - \log a)} = \frac{\log c}{\log a} \] 9. **Conclusion**: Since both LHS and RHS equal \( \frac{\log c}{\log a} \), we have proved that: \[ \frac{\log_a N}{\log_c N} = \frac{\log_a N - \log_b N}{\log_b N - \log_c N} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Prove that: (log_a(log_ba))/(log_b(log_ab))=-log_ab

Prove that log_2log_2log_(2) 16 =1

Prove that log_3log_2log_(sqrt3) 81=1

log_aN. log_bN+log_cN. log_bN+log_aN. log_cN is equals to

Prove that log(1+2+3)=log1+log2+log3

Prove that asqrt(log_a b)-bsqrt(log_b a)=0

Prove that: log_a x=log_bx xx log_c b xx…xx log_n m xx log_a n

Prove that ln(1+x) 0.

Solve : log_4(log_3(log_2x))=0

Prove that: log_3log_2log_(sqrt(5))(625)=1