Home
Class 12
MATHS
Given that log2a=lamda,log4b=lamda^2 and...

Given that `log_2a=lamda,log_4b=lamda^2` and `log_(c^2)(8)=2/(lamda^3+1)` write `log_2((a^2b^5)/5)` as a function of `lamda,(a,b,cgt0,cne1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the properties of logarithms and the given equations. ### Step 1: Write the expression in logarithmic form We need to find \( \log_2 \left( \frac{a^2 b^5}{5} \right) \). We can use the properties of logarithms to separate this expression: \[ \log_2 \left( \frac{a^2 b^5}{5} \right) = \log_2 (a^2 b^5) - \log_2 (5) \] ### Step 2: Expand the logarithm of the product Using the property \( \log_b (xy) = \log_b x + \log_b y \), we can expand \( \log_2 (a^2 b^5) \): \[ \log_2 (a^2 b^5) = \log_2 (a^2) + \log_2 (b^5) \] Using the property \( \log_b (x^n) = n \log_b x \): \[ \log_2 (a^2) = 2 \log_2 a \quad \text{and} \quad \log_2 (b^5) = 5 \log_2 b \] Thus, \[ \log_2 (a^2 b^5) = 2 \log_2 a + 5 \log_2 b \] ### Step 3: Substitute the values of \( \log_2 a \) and \( \log_2 b \) From the problem, we are given: 1. \( \log_2 a = \lambda \) 2. \( \log_4 b = \lambda^2 \) We can convert \( \log_4 b \) to base 2: \[ \log_4 b = \frac{\log_2 b}{\log_2 4} = \frac{\log_2 b}{2} \] Thus, \[ \log_2 b = 2 \lambda^2 \] Now substituting these values into our expression: \[ \log_2 (a^2 b^5) = 2 \lambda + 5 (2 \lambda^2) = 2 \lambda + 10 \lambda^2 \] ### Step 4: Combine everything together Now we can substitute back into our original expression: \[ \log_2 \left( \frac{a^2 b^5}{5} \right) = (2 \lambda + 10 \lambda^2) - \log_2 (5) \] ### Final Expression Thus, the final expression for \( \log_2 \left( \frac{a^2 b^5}{5} \right) \) as a function of \( \lambda \) is: \[ \log_2 \left( \frac{a^2 b^5}{5} \right) = 10 \lambda^2 + 2 \lambda - \log_2 (5) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Solve for a, lamda if log_lamda acdotlog_(5)lamdacdotlog_(lamda)25=2 .

If log_lamdax.log_5lamda=log_x5,lamda ne1,lamdagt0 , then x is equal to

If log_(a)3 = 2 and log_(b)8= 3 , then log_(a)(b) is-

IF lamda^(log_(5)3 =81 ,find the value of lamda .

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.

If log_(a) 3 = 2 and log_(b) 8 = 3," then prove that "log_(a) b= log_(3) 4 .

Find values of lamda for which 1/log_3lamda+1/log_4lamdagt2 .

log_(2)a = 3, log_(3)b = 2, log_(4) c = 1 Find the value of 3a + 2b - 10c

If log_(b)5=a,log_(b)2.5=c,and5^(x)=2.5 , then x=